Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24080171-8    https://doi.org/10.11896/cldb.24080171
  无机非金属及其复合材料 |
聚丙烯纤维对流态固化土流变及力学性能的影响
鞠鹏1,2, 雷宝锋1,2, 姬语洋1,2, 樊恒辉1,2,*
1 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100
2 西北农林科技大学岩土工程研究所/特殊岩土博物馆,陕西 杨凌 712100
Effect of Polypropylene Fibers on Rheological and Mechanical Properties of Fluid-consolidated Soil
JU Peng1,2, LEI Baofeng1,2, JI Yuyang1,2, FAN Henghui1,2,*
1 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
2 Institute of Geotechnical Engineering/Museum of Problematic Rock and Soil, Northwest A&F University, Yangling 712100, Shaanxi, China
下载:  全 文 ( PDF ) ( 34618KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 流态固化土具有制备工艺和设备简单、可就近利用工程弃土、二次开挖成本低以及流动性和均质性高等特点,日益受到工程界的重视。以工程弃土、聚丙烯纤维及MBER土壤固化剂为材料制备流态固化土,通过流动度试验、流变试验、无侧限抗压强度试验与SEM-EDS试验,探究不同纤维掺量、纤维长度对流态固化土流变性能与强度特性的影响及影响机制。结果表明:(1)随着纤维掺量、纤维长度的增加,浆料流动度降低,黏度、塑性黏度与屈服应力增大;流动度与塑性黏度、屈服应力的关联度均大于0.65。(2)固化土的7 d无侧限抗压强度在纤维长度为3、6 mm时随纤维掺量的增加而增加,在纤维长度为9、12和15 mm时随着纤维掺量的增加而先增加后降低;在纤维掺量为0.2%、0.4%时随着纤维长度的增加不断增加,在纤维掺量为0.6%、0.8%时随着纤维长度的增加呈先增加后降低的趋势。(3)聚丙烯纤维对流态固化土的影响机制分为两个阶段。在搅拌阶段,纤维与浆料缠结产生摩擦力阻碍流动;纤维形成三维网状结构包裹浆料,进一步防止浆料发生剪切变形。在养护成型阶段,纤维与水化产物黏结,限制纤维与土体的相对滑动;纤维在土体内部形成三维网状结构,约束土体的变形与位移;纤维圆管内部填充有水化产物,进一步提升纤维的增韧作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
鞠鹏
雷宝锋
姬语洋
樊恒辉
关键词:  聚丙烯纤维  纤维长度  纤维掺量  流变性能  力学性能  微观结构    
Abstract: Fluid-consolidated soil is increasingly valued because of its simple preparation process and equipment, the possibility of utilising engineering spoils in the vicinity, the low cost of secondary excavation, and the high mobility and homogeneity of the soil. In this work, engineering soil, polypropylene fiber and MBER soil curing agent were used as materials to prepare fluid-consolidated soil. The effects of different fiber dosage and fiber length on the rheological and strength properties of fluid-consolidated soil and their mechanisms were investigated through the flow test, rheological test, unconfined compressive strength test and SEM-EDS test. The results show that: (1) With the increase of fiber amount and fiber length, the slurry fluidity decreases, while viscosity, plastic viscosity and yield stress increase;the correlation between fluidity, plastic viscosity and yield stress is greater than 0.65, which is strongly correlated. (2) The 7 d unconfined compressive strength of cured soil increases with the increase of fiber amount when the fiber length is 3 mm and 6 mm, and then decreases with the increase of amount when the fiber length is 9 mm, 12 mm and 15 mm;it increases with the increase of fiber length when the fiber dosage is 0.2% and 0.4%, and then decreases with the increase of fiber length when the fiber dosage is 0.6% and 0.8%. (3) The action mechanism of polypropylene fiber on fluid-consolidated soil has two main aspects:during the mixing stage, the fibers entangle with the slurry, creating friction that hinders flow; the fibers form a three-dimensional network structure that wraps around the slurry, further preventing shear deformation of the slurry. In the maintenance and shaping stage,the fibers are bonded with hydration products, which restricts the relative sliding of the fiber and the soil; the fibers form a three-dimensional mesh structure inside the soil, which restrains the deformation and displacement of the soil; the fiber round tubes are filled with hydration products, which further enhances the toughening effect of the fiber.
Key words:  polypropylene fiber    fiber length    fiber content    rheological property    mechanical property    microstructure
发布日期:  2025-10-27
ZTFLH:  TU502+.4  
基金资助: 国家自然科学基金(52079116)
通讯作者:  *樊恒辉,西北农林科技大学水利与建筑工程学院教授、博士研究生导师。目前主要从事特殊土的工程性质及其机理、土壤固化改良技术等方面的研究工作。yt07@nwsuaf.edu.cn   
作者简介:  鞠鹏,西北农林科技大学水利与建筑工程学院硕士研究生,在樊恒辉教授的指导下进行研究。目前主要研究领域为土体固化。
引用本文:    
鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
JU Peng, LEI Baofeng, JI Yuyang, FAN Henghui. Effect of Polypropylene Fibers on Rheological and Mechanical Properties of Fluid-consolidated Soil. Materials Reports, 2025, 39(20): 24080171-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080171  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24080171
1 Ren C, Yang C, Ben Y L, et al. Theoretical Research in Urban Construction, 2022, 29, 82(in Chinese).
任超, 杨春, 镡兰宇, 等. 城市建设理论研究, 2022, 29, 82.
2 Xiang C T, Ren X H, Mao N M. Value Engineering, 2023, 42(1), 77(in Chinese).
项崇涛, 任小虎, 毛耐民. 价值工程, 2023, 42(1), 77.
3 Zhou Y Z, Wang J Z. New Building Materials, 2019, 46(10), 117(in Chinese).
周永祥, 王继忠. 新型建筑材料, 2019, 46(10), 117.
4 Wang L H. Analysis on construction mechanics effects and parameter optimization of cover-excavation rapid-assembly support integrated machine for urban pipe. Master’s Thesis, Beijing Jiaotong University, China, 2012(in Chinese).
王灵海. 城市管廊盖挖快速装配支护一体机施工力学效应及参数优化分析. 硕士学位论文, 北京交通大学, 2012.
5 Zhu Y X, Bian Y, Min F L, et al. China Civil Engineering Journal, 2020, 53(S1), 245(in Chinese).
朱瑜星, 卞怡, 闵凡路, 等. 土木工程学报, 2020, 53(S1), 245.
6 Wang H S, Wang P, Tang C S, et al. Geological Journal of China Universities, 2018, 24(4), 613 in Chinese).
王宏胜, 王鹏, 唐朝生, 等. 高校地质学报, 2018, 24(4), 613.
7 Tang C S, Shi B, Gao W, et al. Geotextiles and Geomembranes, 2007, 25, 194.
8 Mehmet F, Siddika N. Arabian Journal for Science and Engineering, DOI: 10. 1007/s13369-023-08688-7
9 Ma X Y, Yang X J, Fan H H, et al. Yellow River, 2023, 45(11), 122(in Chinese).
马兴业, 杨秀娟, 樊恒辉, 等. 人民黄河, 2023, 45(11), 122.
10 Wei L, Cai S X, Zhang L, et al. Rock and Soil Mechanics, 2022, 43(12), 3241(in Chinese).
魏丽, 柴寿喜, 张琳, 等. 岩土力学, 2022, 43(12), 3241.
11 Wang G, Pei X J, Yang K. Geological Hazards and Environmental Protection, 2013, 24(3), 109(in Chinese).
王刚, 裴向军, 杨珂. 地质灾害与环境保护, 2013, 24(3), 109.
12 Yang Z H, Zhu T, Zhang D S, et al. Materials Reports, 2025, 39(15), 24050076(in Chinese).
杨正辉, 朱涛, 张东生, 等. 材料导报, 2025, 39(15), 24050076.
13 Yan R F, Yin S H, Liu J M, et al. Journal of Central South University (Science and Technology) 2022, 53(4), 1450(in Chinese).
严荣富, 尹升华, 刘家明, 等. 中南大学学报(自然科学版), 2022, 53(4), 1450.
14 Zhang Z Y. Research on thixotropic properties of paste slurry and pipeline resistance in deep mines. PH. D. Thesis, North China University of Science and Technology, China, 2023(in Chinese).
张友志. 深井矿山膏体浆料触变特性与管输阻力研究. 博士学位论文, 华北理工大学, 2023.
15 Li J, Zhang X, Pang S, et al. Journal of Building Engineering, 2024, 98, 111072.
16 Huang Z Q, Tong Z F, Li X H, et al. Journal of Chemical Engineering of Chinese Universities, 2006(3), 449(in Chinese).
黄祖强, 童张法, 黎铉海, 等. 高校化学工程学报, 2006(3), 449.
17 Anandha. Rheology of fluid, semisolid, and solid foods, Food Engineering Series USA, 2014, pp. 19.
18 Zhao B C, Chen P, Zhai D, et al. Safety in Coal Mines, 2023, 54(10), 117(in Chinese).
赵兵朝, 陈攀, 翟迪, 等. 煤矿安全, 2023, 54(10), 117.
19 Sun F F. Science & Technology Information, 2010(17), 880(in Chinese).
孙芳芳. 科技信息, 2010(17), 880.
20 Ruan B, Deng L F, Ma C, et al. Journal of Railway Science and Engineering, 2017, 14(7), 1415 in Chinese).
阮波, 邓林飞, 马超, 等. 铁路科学与工程学报, 2017, 14(7), 1415.
21 Wang Y S, Liu Z Q, Wan W L, et al. Construction and Building Materials, 2023, 393, 132133.
22 Tang C S, Shi B, Gao W. Journal of Engineering Geology, 2007(1), 108(in Chinese).
唐朝生, 施斌, 高玮. 工程地质学报, 2007(1), 108.
23 Xiao Y, Tong L Y, Che H B, et al. Construction and Building Materials, 2022, 344, 128242.
24 Pang S, Li J, Xie F, et al. Journal of Building Engineering, 2024, 96, 110549.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[15] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed