Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 25010037-7    https://doi.org/10.11896/cldb.25010037
  无机非金属及其复合材料 |
矿渣-粉煤灰基地质聚合物固化铅污染土冻融特性研究
余光垒1, 李亮1,*, 征西遥1, 吴俊2, 杜修力1
1 北京工业大学城市减灾与防灾防护教育部重点实验室,北京 100124
2 上海师范大学建筑工程学院,上海 201418
Freeze-Thaw Characteristics Study of Slag-Fly Ash Based Geopolymer Stabilized Pb-contaminated Soil
YU Guanglei1, LI Liang1,*, ZHENG Xiyao1, WU Jun2, DU Xiuli1
1 Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
2 School of Civil Engineering, Shanghai Normal University, Shanghai 201418, China
下载:  全 文 ( PDF ) ( 34413KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 冻融循环作用会加剧重金属铅(Pb)在污染场地中的渗透,而地质聚合物能够有效修复铅污染场地。基于质量损失、无侧限抗压强度(UCS)、离子浸出试验及微观结构分析,研究冻融循环作用下地质聚合物固化铅污染土的物理力学性能变化,揭示其微观作用机理。研究表明:随着铅离子浓度和冻融循环次数的增加,各冻结温度下固化污染土的质量损失率和强度损失率逐渐增大,但强度损失率的增幅逐渐减小并趋于稳定。固化污染土中孔隙和裂缝宽度的增大是导致其性能劣化的主要原因,但地质聚合物对铅离子的固化率仍保持在99%以上。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余光垒
李亮
征西遥
吴俊
杜修力
关键词:  地质聚合物  固化铅污染土  冻融特性  微观结构  抗冻机理    
Abstract: Freeze-thaw cycle will intensify the penetration of the heavy metal lead (Pb) in the contaminated site, and geopolymer can effectively reme-diate lead-contaminated sites. Based on mass loss, unconfined compressive strength (UCS), ion leaching test, and microstructure analysis, the physical and mechanical properties of geopolymer stabilized Pb-contaminated soil under freeze-thaw cycles were studied, and revealed its microscopic mechanism of action. The results indicate that as lead concentration and freeze-thaw cycles increase, the mass loss and strength loss of geopolymer stabilized soil gradually rise, but the rate of strength loss slows and tends to stabilize with more freeze-thaw cycles. The primary cause of performance degradation of stabilized contaminated soil was identified as the widening of pores and cracks. However, geopolymer can still maintain the stabilization rate of lead ions above 99%.
Key words:  geopolymer    stabilized Pb-contaminated soil    freeze-thaw characteristics    microstructure    freeze resistance mechanism
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TU411  
基金资助: 国家自然科学基金(42377201)
通讯作者:  *李亮,北京工业大学建筑工程学院教授、博士研究生导师。主要研究方向包括土动力学与岩土地震工程理论与数值计算方法。liliang@bjut.edu.cn   
作者简介:  余光垒,北京工业大学大学建筑工程学院硕士研究生,在李亮教授的指导下进行研究。目前主要研究领域为地质聚合物及其固化污染土。
引用本文:    
余光垒, 李亮, 征西遥, 吴俊, 杜修力. 矿渣-粉煤灰基地质聚合物固化铅污染土冻融特性研究[J]. 材料导报, 2026, 40(2): 25010037-7.
YU Guanglei, LI Liang, ZHENG Xiyao, WU Jun, DU Xiuli. Freeze-Thaw Characteristics Study of Slag-Fly Ash Based Geopolymer Stabilized Pb-contaminated Soil. Materials Reports, 2026, 40(2): 25010037-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25010037  或          https://www.mater-rep.com/CN/Y2026/V40/I2/25010037
1 Zhang G B, Song K F, Huang Q, et al. Journal of Environmental Ma-nagement, 2022, 307, 114599.
2 Tang S K, Zhao Y F. 21st Century Business Herald, 2023-11-10(001) (in Chinese).
唐韶葵, 赵云帆. 21世纪经济报道, 2023-11-10 (001).
3 Danouche M, Ghatchouli N, Arroussi H. Journal of Applied Phycology, 2022, 34(1), 475.
4 Shahram G, Hassan K. Journal of Materials Science, 2014, 49(3), 24.
5 Du X C, Wang Y Z, Zhang W H, et al. Modern Chemical Industry, 2018, 38(1), 125 (in Chinese).
杜小称, 万亚珍, 张文辉, 等. 现代化工, 2018, 38(1), 125.
6 Peng M X, Wang Z H. Construction and Building Materials, 2017, 130(15), 103.
7 Jaarsveld J, Deventer J, Schwartzman A. Material and leaching characteristics, 1999, 12(1), 75.
8 Li K L, Jiang L H, Cai Y B. First International Conference on Advances in Chemically-activated Materials, 2010, 72, 233.
9 Xu J Z, Zhou Y L, Tang R X. Journal of Building Materials, 2006, 9(3), 341.
10 White W B. Materials Research Society Symposium Proceedings, 1988, 125, 109.
11 Gao Q, Liu L, Song X Y, et al. Journal of Inner Mongolia University of Technology(Natural Science Edition), 2024, 43(1), 77(in Chinese).
高绮, 刘霖, 宋向阳, 等. 内蒙古工业大学学报(自然科学版), 2024, 43(1), 77.
12 Liao X W, Chen J, Fan T F, et al. Journal of Environmental Engineering, 2018, 12(7), 2056(in Chinese)
廖希雯, 陈杰, 范天凤, 等. 环境工程学报, 2018, 12(7), 2056.
13 Liu K, Liu L, Zhang J N, et al. Science Technology and Engineering, 2021, 21(14), 6075(in Chinese).
刘科, 刘霖, 张加宁, 等. 科学技术与工程, 2021, 21(14), 6075.
14 Wang H W, Xu B Y, Feng X X, et al. Chongqing Architecture, 2021, 20(2), 53(in Chinese).
王惠文, 徐冰莹, 冯晓曦, 等. 重庆建筑, 2021, 20(2), 53.
15 Rui D H, Wu Z P, Ji M C, et al. Journal of Hazardous Materials, 2015, 369, 87.
16 Chew S H, Kamruzzaman A, Lee F H. Journal of Geotechnical and Geoenvironmental engineering, 2004, 130(7), 696.
17 Li L, Zheng X Y, Wu J, et al. Journal of Cleaner Production, 2024, 452, 142183.
18 American Society for Testing and Materials. Standard Test Methods for Freezing and Thawing Compacted Soil-Cement Mixtures, D560-03. USA, American Society for Testing and Materials, 1996, pp. 6.
19 Xu J Z, Zhou Y L, Tang R X. Journal of Building Materials, 2006, 9(3), 341.
20 Li J W. Preparation and properties of fly ash base polymer solidified loess. Master’s Thesis, Xi’an University of Technology, China, 2024 (in Chinese).
李经纬. 粉煤灰基地聚物固化黄土的制备及其性能研究. 硕士学位论文, 西安理工大学, 2024.
21 Hou S W, Zhang H, Yang Z J, et al. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 39(S1), 3123(in Chinese).
侯世伟, 张皓, 杨镇吉, 等. 岩石力学与工程学报, 2020, 39(S1), 3123.
22 Zheng K. Red mud is used in conjunction with a variety of solid wastes to prepare low-carbon cementitious materials. Master’s Thesis, University of Jinan, China, 2021(in Chinese)
郑锴. 赤泥与多种固废协同制备低碳胶凝材料. 硕士学位论文, 济南大学, 2021.
[1] 吴熙, 郑宁, 李路帆, 孙苗苗, 周欣竹. 冻融循环和疲劳荷载协同作用下水泥沥青砂浆的性能劣化试验研究[J]. 材料导报, 2026, 40(2): 24120151-10.
[2] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[3] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[4] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[5] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[6] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[7] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[8] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[9] 翟子权, 段鸿莺, 吕颖慧, 张西文, 赵鹏, 张云升. 北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析[J]. 材料导报, 2025, 39(24): 24090214-10.
[10] 马硕, 蒋义, 高小建. C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理[J]. 材料导报, 2025, 39(24): 24120059-7.
[11] 胡建林, 赵雨萱, 周永祥, 冷发光, 杜修力. 地质聚合物固化土动力特性及动本构模型拟合分析[J]. 材料导报, 2025, 39(24): 25010113-9.
[12] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[13] 杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
[14] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[15] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed