Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24110107-7    https://doi.org/10.11896/cldb.24110107
  无机非金属及其复合材料 |
水热处理废弃咖啡渣对混凝土性能的影响及其机理研究
邵杰1,2, 陈筝1,*, 刘舒介1, 罗淑见1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 华南理工大学土木与交通学院,广州 510640
Study on Influence of Hydrothermally Treated Spent Coffee Grounds on Performance of Concrete and Its Mechanism
SHAO Jie1,2, CHEN Zheng1,*, LIU Shujie1, LUO Shujian1
1 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 25487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对废弃咖啡渣(SCG)回收热解处理能耗高与工艺复杂等问题,选择低温水热处理SCG,制备水热咖啡渣生物炭(SCG-HTC),并将其应用于混凝土中。通过研究水热处理对SCG-HTC特性以及混凝土性能的影响,揭示SCG-HTC的影响机理。结果表明:水热处理能够改变SCG颗粒形貌,丰富孔隙结构,对水泥水化无阻碍。与SCG混凝土相比,SCG-HTC混凝土的工作、力学与保温隔热性能改善更加明显。综合SCG-HTC混凝土的工作、力学以及保温隔热性能,建议SCG-HTC在混凝土中的最优掺量为取代10%(体积分数,如无特殊说明,下同)的砂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邵杰
陈筝
刘舒介
罗淑见
关键词:  废弃咖啡渣  力学性能  微观结构  保温隔热性能  改性机理    
Abstract: Aiming at the problems of high energy consumption and complex process of spent coffee grounds (SCG) recycling and pyrolysis, selected to prepare spent coffee grounds hydrothermal carbon (SCG-HTC) was prepared through low-temperature hydrothermal treatment of SCG, and was applied to concrete. The effect of SCG-HTC on the performance of concrete was revealed by studying the effect of hydrothermal treatment on the properties of SCG-HTC. The results showed that hydrothermal treatment can change the morphology of SCG particles, enrich the pore structure, and have no hindrance to cement hydration. Compared with the performance changes of SCG concrete, the working, mechanical and thermal insulation properties of SCG-HTC concrete are improved more obviously. Considering the working, mechanical and thermal insulation performance of SCG-HTC concrete, the suggested optimal content of SCG-HTC in concrete is 10vol%.
Key words:  spent coffee grounds    mechanical performance    microstructure    thermal insulation performance    modification mechanism
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TU502  
基金资助: 陕西省自然科学基金(2022JM-293);中央大学基金项目(CHD,300102213511)
通讯作者:  *陈筝,博士,西安建筑科技大学材料科学与工程学院副教授、硕士研究生导师。目前主要从事道路建筑材料等方面的研究工作。chenz@xauat.edu.cn   
作者简介:  邵杰,西安建筑科技大学材料科学与工程学院硕士研究生。目前主要研究领域为道路建筑材料的开发。
引用本文:    
邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
SHAO Jie, CHEN Zheng, LIU Shujie, LUO Shujian. Study on Influence of Hydrothermally Treated Spent Coffee Grounds on Performance of Concrete and Its Mechanism. Materials Reports, 2025, 39(24): 24110107-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110107  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24110107
1 Historical data of the global coffee trade. ICO official website,http://www.ico.org/new_historical.asp?section=Statistics.
2 Rosson E, Sgarbossa P, Mozzon M, et al. Processes, 2021, 9(9), 1637.
3 Espuelas S, Marcelino S, Echeverría A M, et al. Fuel, 2020, 278, 118310.
4 Mhemed H A, Kordoghli S, Gallego M M, et al. Chemical Engineering Journal, 2022, 450, 138059.
5 Sirico A, Belletti B, Bernardi P, et al. Theoretical and Applied Fracture Mechanics, 2022, 122, 103626.
6 Sun X, Chen Z, Li J, et al. Journal of Materials in Civil Engineering, 2025, 37(2), 04024502.
7 Gupta S, Kua H W. Journal of Materials in Civil Engineering, 2017, 29(9), 04017086.
8 Berardi U, Naldi M, Berardi U, et al. Energy and Buildings, 2017, 144, 262.
9 Zhao C, Wang P, Wang L, et al. Advances in Materials Science and Engineering, 2014, 2014(1), 206549.
10 Berardi U, Iannace G. Building and Environment, 2015, 94, 840.
11 Charai M, Horma O, El Hammouti A, et al. Materials Today, Procee-dings, 2022, 57, 867.
12 Choi W C, Yun H D, Lee J Y. Journal of the Korea Institute For Structural Maintenance Inspection, 2012, 16 (3), 67.
13 Mohamed G, Djamila B. MATEC Web of Conferences, EDP Sciences, 2018, 149, 01039.
14 Na S, Lee S, Youn S. Symmetry, 2021, 13(4), 619.
15 Yee J J, Khong S C, Tee K F, et al. Discover Applied Sciences, 2024, 6(7), 379.
16 Chen D, Cen K, Zhuang X, et al. Combustion and Flame, 2022, 242, 112142.
17 Roychand R, Kilmartin-Lynch S, Saberian M, et al. Journal of Cleaner Production, 2023, 419, 138205.
18 Zhang X, Zhang Y, Ngo H H, et al. Science of the Total Environment, 2020, 716, 137015.
19 Yang J, Niu H, Corscadden K, et al. The Canadian Journal of Chemical Engineering, 2022, 100(8), 1729.
20 Liu Z, Balasubramanian R. Applied Energy, 2014, 114, 857.
21 Farnam Y, Esmaeeli H S, Zavattieri P D, et al. Cement and Concrete Composites, 2017, 84, 134.
22 Hu Y, Gallant R, Salaudeen S, et al. Sustainability, 2022, 14(14), 8818.
23 Venkatesan S, Baloch H A, Jamro I A, et al. Journal of Water Process Engineering, 2022, 49, 103037.
24 Jamsai W, Phetsom J, Kuntothom T, et al. Mahasarakham, ICoFAB Proceedings, 2019, 21, 112.
25 Shao J, Chen Z, Luo S, et al. Journal of Building Engineering, 2024, 97, 110910.
26 Li J J, Wei Z Q, Qiao H X, et al. Journal of Composite Materials, 2020, 37 (9), 2272(in Chinese)
李刊, 魏智强, 乔宏霞等. 复合材料学报, 2020, 37(9), 2272.
27 Liu G, Liao Y, Sha X, et al. Materials, 2024, 17(5), 1138.
28 Liu W, Zhang Y, Li Z, et al. Journal of Composite Materials, 2022(11), 5423(in Chinese)
刘玮, 张玉, 李珠等. 复合材料学报, 2022(11), 5423.
29 Wang X N, Feng D H. Materials Reports, 2023, 37(21), 120(in Chinese)
王晓楠, 冯德成. 材料导报, 2023, 37(21), 120.
30 Wu F, Yu Q, Liu C. Construction and Building Materials, 2021, 269, 121800.
31 Zhang W, Liu C, Liu H W, et al. Journal of Composite Materials, 2023(8), 4733. (in Chinese)
张韦, 刘超, 刘化威等. 复合材料学报, 2023(8), 4733.
32 Montoya M A, Rahbar-Rastegar R, Haddock J E. International Journal of Pavement Engineering, 2023, 24(2), 2041195.
33 Bi J, Zhao G, Liu Z, et al. International Communications in Heat and Mass Transfer, 2023, 149, 107078.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[3] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[4] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[7] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[8] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed