Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24110203-7    https://doi.org/10.11896/cldb.24110203
  金属与金属基复合材料 |
梯度纳米晶增强NiTi合金悬臂梁弯曲疲劳寿命
黄凯1,*, 尹颢1, 邓中正2
1 武汉大学土木建筑工程学院,武汉 430072
2 香港科技大学机械与航空航天工程系,香港 999077
Enhancing Bending Fatigue Life of NiTi Alloy Cantilever Beam via Gradient Nanocrystallites
HUANG Kai1,*, DENG Zhongzheng2, YIN Hao1
1 School of Civil Engineering, Wuhan University, Wuhan 430072, China
2 Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
下载:  全 文 ( PDF ) ( 17676KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 弯曲是NiTi合金在应用领域中极为广泛的受力模式之一,然而大变形弯曲服役工况下较差的循环稳定性与较短的疲劳寿命使得其应用范围大大受限。本工作通过纳米化工艺制备了不同晶粒尺寸梯度分布的NiTi板材,进行了两种挠度幅值的多场同步悬臂梁弯曲实验,通过分层微结构与应力分析讨论了晶粒尺寸梯度对弯曲疲劳寿命的影响机制。结果表明,沿厚度方向纳米级晶粒尺寸梯度分布显著延长了弯曲疲劳寿命,2 mm挠度下服役寿命达到200万圈以上,较其他类型提高了20倍以上,为目前报道最高。高畸变纳米晶轴向残余压应力减小了受载时上表层的拉应力,降低了马氏体相变局部应变梯度。表层纳米级间隔的位错壁垒,阻碍了相变激活位错与驻留塑性带往表层交互聚集,降低了缺陷和微裂纹的形核率。该梯度晶在延长NiTi合金弯曲疲劳寿命方面取得了突破性进展,为拓展NiTi合金弯曲受载的应用范围提供了可行性案例。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄凯
尹颢
邓中正
关键词:  NiTi合金  梯度纳米晶  弯曲  疲劳寿命  残余应力  位错    
Abstract: Bending is one of the most widely used loading modes of NiTi alloys in application fields. However, the poor cyclic stability and low fatigue life under large deformation bending conditions greatly limit its application range. In this work, NiTi plates with different grain size-gradient distributions through nanotechnology were fabricated. Multi-field synchronous bending experiments of cantilever beams were conducted at two deflection amplitudes. The influence mechanism of grain size-gradient on bending fatigue life was discussed through analysis on microstructure and stress of different layers. The results demonstrate that the bending fatigue life greatly increases by the nanoscaled grain size-gradient along the thickness direction, reaching over 2 million cycles at a 2 mm deflection—more than 20 times longer than other types (the highest value reported to date). The axial residual compressive stress of high-distortion nanocrystallites reduces the tensile stress of the upper surface as loading, lowe-ring the local strain gradient of martensitic transformation. The nanoscale arrangement of dislocation barriers at the surface impedes the interactive aggregation of the phase transition-activated dislocations and retaines plastic bands towards the surface layer, reducing the nucleation ratio of defects and microcracks. This gradient nanocrystallites has achieved significant advancements in enhancing the bending fatigue life of NiTi alloy, presenting a feasible case for broadening the application range of NiTi alloy under bending loads.
Key words:  NiTi alloy    gradient nanocrystallites    bending    fatigue life    residual stress    dislocation
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TB381  
基金资助: 武汉大学工程训练与大学生创新教育研究项目;武汉大学实验技术项目
通讯作者:  *黄凯,博士,武汉大学土木建筑工程学院实验师。目前主要从事形状记忆合金方面的研究工作。00030505@whu.edu.cn   
引用本文:    
黄凯, 尹颢, 邓中正. 梯度纳米晶增强NiTi合金悬臂梁弯曲疲劳寿命[J]. 材料导报, 2025, 39(24): 24110203-7.
HUANG Kai, DENG Zhongzheng, YIN Hao. Enhancing Bending Fatigue Life of NiTi Alloy Cantilever Beam via Gradient Nanocrystallites. Materials Reports, 2025, 39(24): 24110203-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110203  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24110203
1 Yin M,Chen T,Liu P,et al.Journal of Materials Research and Technology,2024,32,4246.
2 Mohd Jani J,Leary M,Subic A,et al.Materials & Design,2014,56,1078.
3 Li X,Cheng S,Sun Q.Applied Thermal Engineering,2022,215,118942.
4 Wei P,Hua P,Xia M,et al.Acta Materialia,2022,240,118269.
5 Figueiredo A M,Modenesi P,Buono V.International Journal of Fatigue,2009,31(4),751.
6 Subramanian S K,Joshi V,Kalra S,et al.Journal of the Mechanical Behavior of Biomedical Materials,2024,157,106657.
7 Kossa A,McMeeking R M.Extreme Mechanics Letters,2021,42,101083.
8 Bhatt A,Rajkumar B.Journal of Oral Biology and Craniofacial Research,2019,9(2),119.
9 Dosanjh A,Paurazas S,Askar M.Journal of endodontics,2017,43(5),823.
10 Congard Y,Saint-Sulpice L,Pino L,et al.Journal of the Mechanical Behavior of Biomedical Materials,2023,147,106122.
11 Gouédard C,Pino L,Petit S,et al.Journal of Materials Engineering and Performance,2022,31(5),3943.
12 Ju X,Moumni Z,Borbély A,et al.Journal of Materials Research and Technology,2024,31,1.
13 Zheng L,He Y,Moumni Z.International Journal of Solids and Structures,2016,83,28.
14 Xie X,Kang G,Kan Q,et al.Modelling and Simulation in Materials Science and Engineering,2019,27(4),045001.
15 Zhao Y,Yu Z,Wang Q,et al.International Journal of Fatigue,2023,176,107893.
16 Zhang Y,Wang L,Lan C,et al.Materials & Design,2024,243,113049.
17 Kan Q,Qiu B,Zhang X,et al.International Journal of Fatigue,2023,172,107657.
18 Zhao Z,Xiao Y,Lin J,et al.Journal of Materials Research and Technology,2023,24,6791.
19 Vashishtha H,Jain J.Materials Today Communications,2022,33,104734.
20 Norfleet D M,Sarosi P M,Manchiraju S,et al.Acta Materialia,2009,57(12),3549.
21 Yin H,He Y,Moumni Z,et al.International Journal of Fatigue,2016,88,166.
22 Yan K,Wei P,Ren F,et al.Shape Memory and Superelasticity,2019,5(4),436.
23 Chen P,Cai X,Liu Y,et al.International Journal of Fatigue,2023,168,107461.
24 Zhou G J,Tang J G.Hot Working technology.2017,46(19),24(in Chinese).
周果君,唐建国.热加工工艺,2017,46(19),24.
25 Liu G,Wang F.Acta Metallurgica Sinica,1997,33(4),6(in Chinese).
刘刚,王福.金属学报,1997,33(4),6.
26 Peterlechner M,Bokeloh J,Wilde G,et al.Acta Materialia,2010,58(20),6637.
27 Shi X B,Guo F M,Zhang J S,et al.Journal of Alloys and Compounds,2016,688,62.
28 Shen Q,Zong Y,Wang Y,et al.Journal of Materials Research and Technology,2023,26,7936.
29 Shi X B,Ma Z Y,Zhang J S,et al.Smart Materials and Structures,2015,24(7),072001.
30 Tang W,Shen Q,Yao X,et al.Materials Science and Engineering:A,2022,849,143497.
31 Ahadi A,Sun Q.Acta Materialia,2014,76,186.
32 Lin H,Hua P,Sun Q.Scripta Materialia,2022,209,114371.
33 Mahtabi M J,Shamsaei N.International Journal of Mechanical Sciences,2016,117,321.
34 Sgambitterra E,Magarò P,Niccoli F,et al.Procedia Structural Integrity,2019,18,908.
35 Kang G,Song D.Theoretical and Applied Mechanics Letters,2015,5(6),245.
36 Alarcon E,Heller L,Chirani S A,et al.International Journal of Fatigue,2017,95,76.
37 Chen J,Zhang K,Kan Q,et al.Applied Physics Letters,2019,115(9),093902.
38 Zhang K,Kang G,Sun Q.Scripta Materialia,2019,159,62.
39 Liang D,Wang Q,Chu K,et al.Applied Materials Today,2022,26,101377.
40 Hua P,Xia M,Onuki Y,et al.Nature Nanotechnology,2021,16(4),409.
41 Kang G,Kan Q,Yu C,et al.Materials Science and Engineering:A,2012,535,228.
42 Shastry V V,Singh G,Ramamurty U.Materials Science and Engineering:A,2021,815,141272.
43 Yan B,Zhang Y,Jiang S,et al.Journal of Alloys and Compounds,2021,883,160797.
44 Wang M,Jiang S,Zhang Y,et al.Applied Surface Science,2022,587,152871.
45 Xu B,Yu C,Kan Q,et al.European Journal of Mechanics-A/Solids,2022,93,104544.
46 Huang K,Yin H,Li M,et al.Materials Science and Engineering:A,2022,856,143872.
47 Xu B,Huang B,Wang C,et al.Acta Mechanica Sinica,2024,41(1),123272.
[1] 万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
[2] 赵甲正, 张深根, 王健, 李俊, 罗丰华. 金属异质结构材料:设计、制备、应用与机遇[J]. 材料导报, 2025, 39(22): 24120123-11.
[3] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[4] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[5] 徐照英, 苏永要, 张腾飞, 王锦标, 吴杰. 钛合金表面硅铜共掺杂类金刚石复合薄膜微观结构与摩擦学性能研究[J]. 材料导报, 2025, 39(19): 24080234-6.
[6] 江亦然, 张东桥, 钱应平, 王腾强. 带槽高强钢板感应加热工艺的数值模拟与实验验证[J]. 材料导报, 2025, 39(19): 24080111-8.
[7] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[8] 张雷, 姜超, 朱学军, 谢群, 刘文胜, 赵振振, 郑元武, 李阳. 混杂纤维水泥基复合材料弯曲性能试验研究[J]. 材料导报, 2025, 39(14): 24040120-8.
[9] 戴浩, 韩海波, 刘湘波, 高远洋, 孙燕琼, 池金虎, 魏艳红. 单筒排气管焊接有限元模拟及工序优化研究[J]. 材料导报, 2025, 39(13): 23110187-5.
[10] 杨红兵, 邵子恒, 颜莹, 谷金波, 迟宏宵, 王斌, 张鹏, 张哲峰. 表面渗碳高强轴承钢滚动接触疲劳行为研究[J]. 材料导报, 2025, 39(12): 24050074-9.
[11] 李莉佳, 刘振晖, 尹晓静, 严文强, 郝兆朋. 轨道车辆零部件材料多轴疲劳寿命预测理论与方法研究进展[J]. 材料导报, 2025, 39(12): 23100024-11.
[12] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[13] 汪德才, 魏家伟, 胡磊, 张庆, 董是, 杨澜, 成凯. 路面基层混合料煤矸石掺配方式及耐久性试验研究[J]. 材料导报, 2025, 39(11): 24010125-10.
[14] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[15] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed