Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24090214-10    https://doi.org/10.11896/cldb.24090214
  无机非金属及其复合材料 |
北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析
翟子权1, 段鸿莺2, 吕颖慧1, 张西文1, 赵鹏1,*, 张云升3,*
1 济南大学土木建筑学院,济南 250022
2 故宫博物院,北京 100009
3 东南大学材料科学与工程学院,南京 211189
Compositional and Microstructural Characterization of Historical Architectural Mortars:a Comparative Study of Gray Backing Layers and Ridge Components from the Divine Kitchen Roof System at the Palace Museum
ZHAI Ziquan1, DUAN Hongying2, LYU Yinghui1, ZHANG Xiwen1, ZHAO Peng1,*, ZHANG Yunsheng3,*
1 School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
2 The Palace Museum, Beijing 100009, China
3 School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
下载:  全 文 ( PDF ) ( 45747KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 北京故宫是人类文明史上最伟大的建筑工程之一,以石灰为主的各种灰浆是其屋面营造的主要原材料。通过现代分析手段检测屋面石灰灰浆的物相组成和成分配比,对故宫古建筑群的修缮具有重要的参考价值和实用意义。因此,本工作以北京故宫神厨屋面四种石灰灰浆样品为研究对象,分析了屋面石灰灰浆的岩相、物相组成、微观结构和孔隙特征。结果表明,护板灰由纯石灰构成,泥灰背、青灰背和夹垄灰中分别掺加了泥炭土、黏土和氧化铁红。四种石灰灰浆样品经酸腐蚀后剩余的杂质分别占原样品质量的5%、70%、9%和21%。分析发现护板灰、泥灰背、青灰背和夹垄灰中均含有水化硅酸钙,但是结合TG-DSC和XRD定量分析认为样品中水化硅酸钙含量很少,并且水化硅酸钙随着碳化的进行逐渐变为方解石晶型的碳酸钙形貌,导致难以通过扫描电镜观察到水化硅酸钙。传统屋面灰背营造过程中包含拍打、压实和抹平等工艺,青灰背进行多次压浆后外表面形成了一层光滑致密的保护层,而夹垄灰和泥灰背因受到外力压实或拍打也变得更加密实。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
翟子权
段鸿莺
吕颖慧
张西文
赵鹏
张云升
关键词:  故宫古建筑群  屋面  石灰灰浆  物相组成  微观结构    
Abstract: The Forbidden City in Beijing is one of the greatest architectural projects in the history of human civilization. Its roofs comprise various kinds of lime-based mortar. Detecting the phase composition of the roofing lime mortar and the ratios between the different components using modern analytical approaches provides valuable insights and has practical significance for the repair of the ancient complex of the Forbidden City. Therefore, this work focuses on four kinds of lime mortar samples from the roofs of the Sacrificial Kitchen of the Forbidden City. The samples were analyzed using modern testing approaches, such as the polarizing microscope, acid corrosion, X-ray fluorescence (XRF) analyzer, X-ray powder diffraction (XRD) analyzer, thermogravimetry-differential scanning calorimetry (TG-DSC) analyzer, Fourier transform infrared spectrometer (FTIR), scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and mercury intrusion porosimetry (MIP), to characterize the petrography, phase composition, microstructure, and pore structure of the lime mortar. The results showed that hubanhui, or the first layer of mortar covering roofing boards, consisted of pure lime, whereas nihui and qinghui, or the second and third layers of mortar, as well as jialonghui, or the mortar used to fill the gaps on both sides of tiles, were mixed with peat soil, clay, and iron oxide red. After acid corrosion, the masses of the remaining impurities accounted for 5%, 70%, 9%, and 21% of the four mortar samples, respectively. Through analysis, we identified the presence of calcium silicate hydrate (C-S-H) in hubanhui, nihui, qinghui, and jialonghui. However, the quantitative analysis of XRD and TG-DSC shows that the content of C-S-H in the samples is very small. Carbonization gradually turned C-S-H into calcite, making it difficult to observe C-S-H through scanning electron microscopy. The process of traditional roofing bedding involves tapping, compaction, and plastering. The outer surface of the qinghui layer formed a smooth and dense protective layer after multiple compactions, and the jialonghui and nihui mortar became more solid after compaction or tapping.
Key words:  Forbidden City complex    roofing    lime mortar    phase composition    microstructure
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  K879.1  
基金资助: 国家自然科学基金(52108214);国家重点研发计划(2020YFC1522404);中国博士后科学基金面上基金(2022M710816)
通讯作者:  *赵鹏,博士,济南大学土木建筑学院副教授、硕士研究生导师。主要从事水泥基材料及其耐久性、建筑遗产保护等方面的研究。zhaopeng_610@163.com;张云升,甘肃省领军拔尖人才,长江学者,东南大学教授及博士研究生导师,担任亚洲混凝土学会建造与材料部主席。主要从事结构混凝土耐久性、固废资源化与绿色低碳建材和建筑遗产保护等方面的研究。zhangyunsheng2011@163.com   
作者简介:  翟子权,济南大学土木建筑学院硕士研究生,在赵鹏副教授和张云升教授的指导下进行研究,目前主要研究领域为建筑遗产保护。
引用本文:    
翟子权, 段鸿莺, 吕颖慧, 张西文, 赵鹏, 张云升. 北京故宫神厨屋面灰背和夹垄灰浆成分及微结构对比分析[J]. 材料导报, 2025, 39(24): 24090214-10.
ZHAI Ziquan, DUAN Hongying, LYU Yinghui, ZHANG Xiwen, ZHAO Peng, ZHANG Yunsheng. Compositional and Microstructural Characterization of Historical Architectural Mortars:a Comparative Study of Gray Backing Layers and Ridge Components from the Divine Kitchen Roof System at the Palace Museum. Materials Reports, 2025, 39(24): 24090214-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090214  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24090214
1 Ma Y M. Study on the tile work of the construction technique of the Qing Dynasty Official Style Building. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2022 (in Chinese).
马宇萌. 清官式建筑营造技艺瓦作研究. 硕士学位论文, 北京建筑大学, 2022.
2 Miriello D, Barca D, Pecci A, et al. Archaeometry, 2015, 57(1), 100.
3 Fan Z Q. Ancient Architecture Traditional Technology, 2018(1), 15 (in Chinese).
樊智强. 古建园林技术, 2018(1), 15.
4 Fonseca B S D, Pinto A P F, Silva D V, et al. Construction and Building Materials, 2020, 247, 118627.
5 Liu L Y, Zhang B J, Yang H, et al. Spectroscopy and Spectral Analysis, 2018, 38(7), 2054 (in Chinese).
刘璐瑶, 张秉坚, 杨红, 等. 光谱学与光谱分析, 2018, 38(7), 2054.
6 Li T, Wang Q M, He K T, et al. Spectroscopy and Spectral Analysis, 2024, 44(6), 1661 (in Chinese).
李婷, 王茜蔓, 贺康特, 等. 光谱学与光谱分析, 2024, 44(6), 1661.
7 Zhao P Q, Liang C, Sun C K. Materials Reports, 2019, 33(2), 644 (in Chinese).
赵丕琪, 梁辰, 孙传奎, 等. 材料导报, 2019, 33(2), 644.
8 Bakolas A, Biscontin G, Moropoulou A, et al. Thermochimica Acta, 1998, 321(1-2), 151.
9 Gleize P J P, Motta E V, Silva D A, et al. Cement and Concrete Compo-sites, 2009, 31(5), 342.
10 Santhanam K, Ramadoss R. Construction and Building Materials, 2022, 339, 127619.
11 Moropoulou A, Bakolas A, Anagnostopoulou S. Cement and Concrete Composites, 2005, 27(2), 295.
12 Qi G D, Wang D M, Zhu Y H, et al. Journal of the Chinese Ceramic Society, 2022, 50(8), 2163 (in Chinese).
齐国栋, 王栋民, 朱宇华, 等. 硅酸盐学报, 2022, 50(8), 2163.
13 Grilo J, Santos S A, Faria P, et al. Construction and Building Materials, 2014, 51, 287.
14 Borsoi G, Santos S A, Menezes P, et al. Construction and Building Materials, 2019, 204, 597.
15 Válek J, Van H E, Viani A, et al. Construction and Building Materials, 2014, 66, 771.
16 Lu Z, Wang S L, Wang W S, et al. Materials Reports, 2021, 35(3), 3033 (in Chinese).
卢喆, 王社良, 王善伟, 等. 材料导报, 2021, 35(3), 3033.
17 Sun T Q, Wei G F, Cheng B Z, et al. Spectroscopy and Spectral Analysis, 2021, 41(6), 1949 (in Chinese).
孙天强, 魏国锋, 程保增, 等. 光谱学与光谱分析, 2021, 41(6), 1949.
18 Wang H, Zhang D, Chen Y W, et al. Journal of Building Materials, 2022, 25(10), 1055 (in Chinese).
王辉, 张典, 陈寅炜, 等. 建筑材料学报, 2022, 25(10), 1055.
19 Lai C L, Liu L P, Liu J H, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 2890 (in Chinese).
赖创林, 刘乐平, 刘剑辉, 等. 硅酸盐学报, 2023, 51(11), 2890.
20 Liu J H, Zou M, Li K, et al. Materials Reports, 2023, 37(19), 92 (in Chinese).
刘娟红, 邹敏, 李康, 等. 材料导报, 2023, 37(19), 92.
21 Yu W Z. Study on mechanical properties and carbonation of calcium silicate hydrate at micro-and nanoscale scale. Ph. D. Thesis, Wuhan University, China, 2020 (in Chinese).
余文志. 水化硅酸钙力学性能及碳化的微纳米尺度研究. 博士学位论文, 武汉大学, 2020.
22 Zhu Z Y. Research on the micro-nano structure of calcium silicate hydrates and its modification by organics. Ph. D. Thesis, Tongji University, China, 2022 (in Chinese).
朱哲誉. 水化硅酸钙微纳结构与有机物改性研究. 博士学位论文, 同济大学, 2022.
23 Zhang D, Zhao J, Wang D, et al. Construction and Building Materials, 2020, 244, 118360.
24 Xu S Q, Wang L L, Ma Q L, et al. Sciences of Conservation and Archaeo-logy, 2017, 29(4), 1 (in Chinese).
徐树强, 王乐乐, 马清林, 等. 文物保护与考古科学, 2017, 29(4), 1.
25 Zhang D, Xu Z, Liu Q, et al. Quaternary Science Reviews, 2024, 338, 108836.
26 Rispoli C, Montesano G, Verde M, et al. Construction and Building Materials, 2024, 411, 134408.
27 Medeghini L, Calzolari L, Botticelli M, et al. Cement and Concrete Composites, 2024, 148, 105484.
28 Wu L, Bao R, Dai J, et al. Materials Reports, 2024, 38(15), 177 (in Chinese).
吴浪, 鲍蓉, 戴健, 等. 材料导报, 2024, 38(15), 177.
29 Degloorkar N K, Pancharathi R K. Construction and Building Materials, 2022, 341, 127776.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[6] 马硕, 蒋义, 高小建. C-S-H晶种对蒸汽养护水泥基材料强度的影响规律与作用机理[J]. 材料导报, 2025, 39(24): 24120059-7.
[7] 邵杰, 陈筝, 刘舒介, 罗淑见. 水热处理废弃咖啡渣对混凝土性能的影响及其机理研究[J]. 材料导报, 2025, 39(24): 24110107-7.
[8] 杨佳奇, 李海军, 李皓云, 廉杰, 王小维, 宋祎鹏, 张瑞娟, 杨帆, 杨吉军. 辐照对AlxCrMoNbZr高熵合金涂层微观结构和力学性能的影响研究[J]. 材料导报, 2025, 39(24): 24120102-8.
[9] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[10] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[11] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[12] 乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
[13] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[14] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[15] 王国辰, 胡长明, 武智鹏, 李靓, 樊恒辉, 何小文. 电石渣碱激发钢渣-矿渣胶凝材料的性能与水化机理[J]. 材料导报, 2025, 39(18): 24090103-8.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed