Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24110207-9    https://doi.org/10.11896/cldb.24110207
  无机非金属及其复合材料 |
LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响
龙海洋1,†, 王涛1,†, 曹俊3,4,*, 李艳辉2, 马汝成2, 李晓硕1, 王博超1, 刘志存1, 方姣3,4
1 华北理工大学机械工程学院,河北 唐山 063210
2 广东省科学院新材料研究所,粤港现代表面工程技术联合实验室,广东省现代表面工程技术重点实验室,广州 510651
3 湖南大学粤港澳大湾区创新研究院,广州 410082
4 湖南大学生命医学交叉研究院,长沙 410082
Effects of LiSbO3 Doping on the Structure and Piezoelectric Properties of KNN-based Lead-free Piezoelectric Ceramics
LONG Haiyang1,†, WANG Tao1,†, CAO Jun3,4,*, LI Yanhui2, MA Rucheng2, LI Xiaoshuo1,WANG Bochao1, LIU Zhicun1, FANG Jiao3,4
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
2 Institute of New Materials, Guangdong Academy of Sciences, Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangzhou 510651, China
3 Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 410082, China
4 School of Biomedical Sciences Hunan University, Changsha 410082, China
下载:  全 文 ( PDF ) ( 36768KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 压电陶瓷在高压电性、高功率等场景(如换能器、压电发电机等)中的应用呈增长趋势。为避免压电器件在高温工况下失效,较高的机械品质因数(Mechanical quality factor,Qm)是必要条件。大量研究工作表明,压电系数与机械品质因数等参数呈现出此消彼长的关系,这使得压电材料在保持高压电系数的同时提高机械品质成为巨大挑战。本工作采用固相烧结法制备了(1-x)(K0.44Na0.56Nb0.98Ta0.02O3)-xLiSbO3(x=0.01、0.02、0.03、0.04)陶瓷,简称(KNNT-LS)。结果表明,加入适量的LiSbO3可以形成R-O(低温)、O-T(室温)相边界,相结构转变温度趋近于室温,从而可以构建R-O-T共存相,这有利于协同调制提高压电性能,扩大高功率压电器件的工作温度范围。第二相晶粒增多及氧空位的出现强化了钉扎效应,提高了陶瓷的Qm值。在x=0.02(d33=248 pC/N、TC=379 ℃、Qm=145、εr=33 650(1 kHz、379 ℃))时陶瓷性能达到最优。此外,通过调控掺杂组分与氧空位的含量,机械品质因数(Qm)获得了显著改善。本研究有助于理解该体系掺杂组分引起的多相共存的本质以及氧空位对压电性能的影响,在大功率器件领域具有广阔应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龙海洋
王涛
曹俊
李艳辉
马汝成
李晓硕
王博超
刘志存
方姣
关键词:  铌酸钾钠基无铅压电陶瓷  相变  微观结构  氧空位  机械品质因数    
Abstract: Piezoelectric ceramics are showing a growing trend in applications with high piezoelectric coefficients and high power, such as transducers and piezoelectric generators. To prevent the piezoelectric devices from failing at high temperature conditions, a higher mechanical quality factor (Qm) value is necessary. Extensive research has shown that parameters such as piezoelectric coefficients and mechanical quality factor exhibit a trade-off relationship, making it a significant challenge to improve the mechanical quality while maintaining a high piezoelectric coefficient in piezoelectric materials. This work uses solid-state sintering method to prepare (1-x) (K0.44Na0.56Nb0.98Ta0.02O3)-xLiSbO3 (x=0.01, 0.02, 0.03, 0.04) ceramics, abbreviated as KNNT-LS. The results showed that adding an appropriate amount of LiSbO3 can form R-O phase boundaries at low temperature and O-T phase boundaries at room temperature, and the phase structure transition temperature is close to room temperature, constructing R-T coexisting phases. This is beneficial for synergistic modulation to improve piezoelectric performance and expand its working temperature range, the increase of second-phase grains and the emergence of oxygen vacancies have intensified the pinning effect, enhancing the Qm value of the ceramic. The performance reaches its optimal level at x=0.02 (d33=248 pC/N, TC=379 ℃, Qm=145, εr=33 650 (1 kHz, 379 ℃)). In addition, the mechanical quality factor (Qm) has been significantly improved by the regulation of doping components and oxygen vacancies. The findings are helpful to understand the nature of multiphase coexistence caused by doping components in this system and the inf-luence of oxygen vacancies on piezoelectric properties, which has broad applications in high-power devices.
Key words:  potassium sodium niobate(KNN) lead-free piezoelectric ceramics    phase transition    microstructure    oxygen vacancy    mechanical quality factor
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TM282  
基金资助: 湖南省重大科技专项资助项目(2021SK1020);广东省科学院“百人计划”引进专项(2021GDASYL-20210102005);广东省科技计划项目资助(2023B1212120008;2023B1212060045);广东省科学院科技合作平台建设资金(2022GDASZH-2022010203-003);广州市“青年科技人才托举工程(QT-2023-038);河北省在读研究生创新能力培养资助项目(CXZZBS2024136);河北省省属高校基本科研业务费项目(JQN2023029)
通讯作者:  *曹俊,博士,湖南大学粤港澳大湾区创新研究院功能材料器件研发中心主任、硕士研究生导师。目前主要从事功能材料、功能器件等方面的研究。caojun10@126.com   
作者简介:  共同第一作者 龙海洋,华北理工大学副教授、硕士研究生导师。主要从事激光增材制造、机械动力学、数字化设计方面等方面的研究工作。王涛,华北理工大学机械工程学院硕士研究生,在曹俊教授的指导下进行研究。目前主要研究领域为功能材料。
引用本文:    
龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
LONG Haiyang, WANG Tao, CAO Jun, LI Yanhui, MA Rucheng, LI Xiaoshuo,WANG Bochao, LIU Zhicun, FANG Jiao. Effects of LiSbO3 Doping on the Structure and Piezoelectric Properties of KNN-based Lead-free Piezoelectric Ceramics. Materials Reports, 2025, 39(23): 24110207-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110207  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24110207
1 Du J, Wang J F, Zang G Z, et al. Chinese Physics Letters, 2011, 28(6), 3.
2 Chen T, Wang H L, Zhang T, et al. Ceramics International, 2014, 40(2), 2959.
3 Li R C, Sun X X, Lv X, et al. Acta Materialia, 2021, 218, 9.
4 Chen T, Wang H L, Zhang T, et al. Ceramics International, 2014, 40(3), 4341.
5 Li X H, Jiang M, Liu J, et al. Physica Status Solidi A-Applications and Materials Science, 2009, 206(11), 2622.
6 Quan Y, Wang L Y, Ren W, et al. Frontiers Materials, 2021, 8, 5.
7 Wang X P, Wu J G, Xiao D Q, et al. Journal of Materials Chemistry A, 2014, 2(12), 4122.
8 Du J, Wang J F, Zang G Z, et al. Physica B-Condensed Matter, 2011, 406(21), 4077.
9 Wang Y L, Lu Y Q, Wu M J, et al. Ceramics International, 2012, 38, S295.
10 Chen Z W, Hu J Q. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 623.
11 Du H L, Tang F S, Li Z M, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, s462.
12 Jiang J H, Li H, Zhao C L, et al. Journal of Alloy and Compounds, 2022, 925, 7.
13 Jiang X P, Yang Q, Yu Z D, et al. Journal of Alloy and Compounds, 2010, 493(1-2), 276.
14 Wang Y L, Lu Y Q, Wu M J, et al. International Journal of Applied Ceramic Technology, 2012, 9(1), 221.
15 Cheng X J, Wu J G, Wang X P, et al. Journal of Applied Physics, 2013, 114(12), 7.
16 Jiang M H, Deng M J, Lu H X, et al. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(2), 167.
17 Zheng T, Wu J G, Xiao D Q, et al. Journal of Materials Chemistry A, 2015, 3(5), 1868.
18 Kim H, Kim D S, Chae S J, et al. Ceramics International, 2021, 47(24), 34443.
19 Xi K B, Li Y L, Sun Y, et al. Journal of the American Ceramic Society, 2023, 106(1), 466.
20 Yao Z R, Li H Y, Ma M Z, et al. Ceramics International, 2016, 42(4), 5391.
21 Ahn C W, Song H C, Nahm S, et al. Japanese Journal of Applied Physics Part 2-Letters Express Letters, 2005, 44(42-45), L1361.
22 Wang D L, Zhu K J, Ji H L, et al. Ferroelectrics, 2009, 392, 120.
23 Fu Z Q, Yang J, Lu P, et al. Ceramics International, 2017, 43(15), 12893.
24 Jia P, Zheng Z, Li Y, et al. Journal of Alloys and Compounds, 2023, 930.
25 Xiao D Q, Zhu J G. Ferroelectrics, 2010, 404, 10.
26 Yan X B, Peng B L, Lu X F, et al. Journal of Alloys and Compounds, 2015, 653, 523.
27 Guo J M, Xu F, Shang X Z, et al. Journal of the American Ceramic Society, 2016, 99(7), 2341.
28 Shang X Z, Guo J M, Xiao W P, et al. Journal of Electronic Materials, 2014, 43(5), 1424.
29 Kim D S, Eum J M, Go S H, et al. Journal of Alloys and Compounds, 2021, 882, 160662.
30 Wang Y Y, Li Y S, Yang Y, et al. ECS Journal of Solid State Science and Technology, 2023, 12(11), 7.
31 Zhang H M, Qu S B, Zhao J B, et al. In:Proceedings of the 2nd International Conference on Chemical, Material and Metallurgical Engineering (ICCMME 2012). Kunming, China, 2012.
32 Liang W, Xiao D, Wu W, et al. Current Applied Physics, 2011, 11(3), S138.
33 Zhang X Z, Yin Q Y, Cheng H W, et al. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2024, 305, 10.
34 Palei P, Sonia, Kumar P. Journal of Physics and Chemistry of Solids, 2012, 73(7), 827.
35 Yang B, Peng H, Zhang Y, et al. Materials Research Bulletin, 2023, 158, 112077.
36 Niu H Y, Fan D M, Mo W, et al. Journal of Electronic Materials, 2023, 52(11), 7280.
37 Huan Y, Wang X H, Wei T, et al. Journal of the European Ceramic Society, 2017, 37(5), 2057.
38 Huan Y, Wang X H, Wei T, et al. Journal of the American Ceramic Society, 2017, 100(5), 2024.
39 Liu T, Chen Y, Zheng Z, et al. Ceramics International, 2023, 49(15), 25035.
40 Moure A, Val-Gómez P, Del Campo A, et al. Materials & Design, 2023, 232, 112123.
41 Zhao Y J, Zhao Y Z, Huang R X, et al. In:Proceedings of the 11th International Conference in Asia of the International-Union-of-Materials-Research-Societies. Qingdao, China, 2010.
42 Peng L, Gao X, Liu X, et al. Materials Today Communications, 2024, 38, 108214.
43 Zhu W L, Zhu J L, Meng Y, et al. Journal of Physics D-Applied Physics, 2011, 44(50), 8.
44 Huang H S, Chen X M, Lu J B, et al. Physica B-Condensed Matter, 2019, 564, 28.
45 Xu F, Chen J, Lu Y, et al. Ceramics International, 2018, 44(14), 16745.
46 Qi X, Ren P, Tong X. Ceramics International, 2023, 49(22), 34795.
47 Meng X H, Wang W, Zhang P F, et al. Crystengcomm, 2017, 19(38), 5712.
48 Men T L, Thong H C, Li J T, et al. Ceramics International, 2017, 43(12), 9538.
49 Eyraud L, Eyraud P, Audigier D, et al. Ferroelectrics, 1996, 175(1), 241.
50 Yang H, Wang X, Yang X, et al. Journal of the European Ceramic Society, 2024, 44(5), 3247.
51 Chen Y, Luo Q, Ke X Y, et al. Ceramics International, 2017, 43(17), 15556.
52 Huan Y, Wang X H, Gao R L, et al. Journal of the American Ceramic Society, 2014, 97(11), 3524.
53 Xie L X, Xing J, Tan Z, et al. Journal of Alloys and Compounds, 2018, 758, 14.
54 Fadhlina H, Atiqah A, Zainuddin Z. Materials Today Communications, 2022, 33, 16.
55 Zhang B Y, Wang X P, Cheng X J, et al. Journal of Alloys and Compounds, 2013, 581, 446.
56 Peng L, Gao X Q, Liu X K, et al. Materials Today Communications, 2024, 38, 11.
[1] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[2] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[3] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[4] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
[5] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[6] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[7] 李辉, 郭文尧, 肖强强, 王梦千, 杜守勤, 李国宁, 李诗杰, 郭敏, 马晓玲. Zn掺杂ZIF-67构筑光热-相变储能一体化材料的性能研究[J]. 材料导报, 2025, 39(6): 23100236-7.
[8] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[9] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[10] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[11] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[12] 霍海峰, 贾汶韬, 孙涛, 成鑫磊, 陈庆炜, 徐晖, 李涛. 压实雪抗压强度变化规律及烧结机制试验研究[J]. 材料导报, 2025, 39(23): 24120101-8.
[13] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[14] 刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
[15] 乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed