Effects of LiSbO3 Doping on the Structure and Piezoelectric Properties of KNN-based Lead-free Piezoelectric Ceramics
LONG Haiyang1,, WANG Tao1,, CAO Jun3,4,*, LI Yanhui2, MA Rucheng2, LI Xiaoshuo1,WANG Bochao1, LIU Zhicun1, FANG Jiao3,4
1 College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China 2 Institute of New Materials, Guangdong Academy of Sciences, Guangdong-Hong Kong Joint Laboratory of Modern Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangzhou 510651, China 3 Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 410082, China 4 School of Biomedical Sciences Hunan University, Changsha 410082, China
Abstract: Piezoelectric ceramics are showing a growing trend in applications with high piezoelectric coefficients and high power, such as transducers and piezoelectric generators. To prevent the piezoelectric devices from failing at high temperature conditions, a higher mechanical quality factor (Qm) value is necessary. Extensive research has shown that parameters such as piezoelectric coefficients and mechanical quality factor exhibit a trade-off relationship, making it a significant challenge to improve the mechanical quality while maintaining a high piezoelectric coefficient in piezoelectric materials. This work uses solid-state sintering method to prepare (1-x) (K0.44Na0.56Nb0.98Ta0.02O3)-xLiSbO3 (x=0.01, 0.02, 0.03, 0.04) ceramics, abbreviated as KNNT-LS. The results showed that adding an appropriate amount of LiSbO3 can form R-O phase boundaries at low temperature and O-T phase boundaries at room temperature, and the phase structure transition temperature is close to room temperature, constructing R-T coexisting phases. This is beneficial for synergistic modulation to improve piezoelectric performance and expand its working temperature range, the increase of second-phase grains and the emergence of oxygen vacancies have intensified the pinning effect, enhancing the Qm value of the ceramic. The performance reaches its optimal level at x=0.02 (d33=248 pC/N, TC=379 ℃, Qm=145, εr=33 650 (1 kHz, 379 ℃)). In addition, the mechanical quality factor (Qm) has been significantly improved by the regulation of doping components and oxygen vacancies. The findings are helpful to understand the nature of multiphase coexistence caused by doping components in this system and the inf-luence of oxygen vacancies on piezoelectric properties, which has broad applications in high-power devices.
龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
LONG Haiyang, WANG Tao, CAO Jun, LI Yanhui, MA Rucheng, LI Xiaoshuo,WANG Bochao, LIU Zhicun, FANG Jiao. Effects of LiSbO3 Doping on the Structure and Piezoelectric Properties of KNN-based Lead-free Piezoelectric Ceramics. Materials Reports, 2025, 39(23): 24110207-9.
1 Du J, Wang J F, Zang G Z, et al. Chinese Physics Letters, 2011, 28(6), 3. 2 Chen T, Wang H L, Zhang T, et al. Ceramics International, 2014, 40(2), 2959. 3 Li R C, Sun X X, Lv X, et al. Acta Materialia, 2021, 218, 9. 4 Chen T, Wang H L, Zhang T, et al. Ceramics International, 2014, 40(3), 4341. 5 Li X H, Jiang M, Liu J, et al. Physica Status Solidi A-Applications and Materials Science, 2009, 206(11), 2622. 6 Quan Y, Wang L Y, Ren W, et al. Frontiers Materials, 2021, 8, 5. 7 Wang X P, Wu J G, Xiao D Q, et al. Journal of Materials Chemistry A, 2014, 2(12), 4122. 8 Du J, Wang J F, Zang G Z, et al. Physica B-Condensed Matter, 2011, 406(21), 4077. 9 Wang Y L, Lu Y Q, Wu M J, et al. Ceramics International, 2012, 38, S295. 10 Chen Z W, Hu J Q. Transactions of Nonferrous Metals Society of China, 2008, 18(3), 623. 11 Du H L, Tang F S, Li Z M, et al. Transactions of Nonferrous Metals Society of China, 2006, 16, s462. 12 Jiang J H, Li H, Zhao C L, et al. Journal of Alloy and Compounds, 2022, 925, 7. 13 Jiang X P, Yang Q, Yu Z D, et al. Journal of Alloy and Compounds, 2010, 493(1-2), 276. 14 Wang Y L, Lu Y Q, Wu M J, et al. International Journal of Applied Ceramic Technology, 2012, 9(1), 221. 15 Cheng X J, Wu J G, Wang X P, et al. Journal of Applied Physics, 2013, 114(12), 7. 16 Jiang M H, Deng M J, Lu H X, et al. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2011, 176(2), 167. 17 Zheng T, Wu J G, Xiao D Q, et al. Journal of Materials Chemistry A, 2015, 3(5), 1868. 18 Kim H, Kim D S, Chae S J, et al. Ceramics International, 2021, 47(24), 34443. 19 Xi K B, Li Y L, Sun Y, et al. Journal of the American Ceramic Society, 2023, 106(1), 466. 20 Yao Z R, Li H Y, Ma M Z, et al. Ceramics International, 2016, 42(4), 5391. 21 Ahn C W, Song H C, Nahm S, et al. Japanese Journal of Applied Physics Part 2-Letters Express Letters, 2005, 44(42-45), L1361. 22 Wang D L, Zhu K J, Ji H L, et al. Ferroelectrics, 2009, 392, 120. 23 Fu Z Q, Yang J, Lu P, et al. Ceramics International, 2017, 43(15), 12893. 24 Jia P, Zheng Z, Li Y, et al. Journal of Alloys and Compounds, 2023, 930. 25 Xiao D Q, Zhu J G. Ferroelectrics, 2010, 404, 10. 26 Yan X B, Peng B L, Lu X F, et al. Journal of Alloys and Compounds, 2015, 653, 523. 27 Guo J M, Xu F, Shang X Z, et al. Journal of the American Ceramic Society, 2016, 99(7), 2341. 28 Shang X Z, Guo J M, Xiao W P, et al. Journal of Electronic Materials, 2014, 43(5), 1424. 29 Kim D S, Eum J M, Go S H, et al. Journal of Alloys and Compounds, 2021, 882, 160662. 30 Wang Y Y, Li Y S, Yang Y, et al. ECS Journal of Solid State Science and Technology, 2023, 12(11), 7. 31 Zhang H M, Qu S B, Zhao J B, et al. In:Proceedings of the 2nd International Conference on Chemical, Material and Metallurgical Engineering (ICCMME 2012). Kunming, China, 2012. 32 Liang W, Xiao D, Wu W, et al. Current Applied Physics, 2011, 11(3), S138. 33 Zhang X Z, Yin Q Y, Cheng H W, et al. Materials Science and Engineering B-Advanced Functional Solid-State Materials, 2024, 305, 10. 34 Palei P, Sonia, Kumar P. Journal of Physics and Chemistry of Solids, 2012, 73(7), 827. 35 Yang B, Peng H, Zhang Y, et al. Materials Research Bulletin, 2023, 158, 112077. 36 Niu H Y, Fan D M, Mo W, et al. Journal of Electronic Materials, 2023, 52(11), 7280. 37 Huan Y, Wang X H, Wei T, et al. Journal of the European Ceramic Society, 2017, 37(5), 2057. 38 Huan Y, Wang X H, Wei T, et al. Journal of the American Ceramic Society, 2017, 100(5), 2024. 39 Liu T, Chen Y, Zheng Z, et al. Ceramics International, 2023, 49(15), 25035. 40 Moure A, Val-Gómez P, Del Campo A, et al. Materials & Design, 2023, 232, 112123. 41 Zhao Y J, Zhao Y Z, Huang R X, et al. In:Proceedings of the 11th International Conference in Asia of the International-Union-of-Materials-Research-Societies. Qingdao, China, 2010. 42 Peng L, Gao X, Liu X, et al. Materials Today Communications, 2024, 38, 108214. 43 Zhu W L, Zhu J L, Meng Y, et al. Journal of Physics D-Applied Physics, 2011, 44(50), 8. 44 Huang H S, Chen X M, Lu J B, et al. Physica B-Condensed Matter, 2019, 564, 28. 45 Xu F, Chen J, Lu Y, et al. Ceramics International, 2018, 44(14), 16745. 46 Qi X, Ren P, Tong X. Ceramics International, 2023, 49(22), 34795. 47 Meng X H, Wang W, Zhang P F, et al. Crystengcomm, 2017, 19(38), 5712. 48 Men T L, Thong H C, Li J T, et al. Ceramics International, 2017, 43(12), 9538. 49 Eyraud L, Eyraud P, Audigier D, et al. Ferroelectrics, 1996, 175(1), 241. 50 Yang H, Wang X, Yang X, et al. Journal of the European Ceramic Society, 2024, 44(5), 3247. 51 Chen Y, Luo Q, Ke X Y, et al. Ceramics International, 2017, 43(17), 15556. 52 Huan Y, Wang X H, Gao R L, et al. Journal of the American Ceramic Society, 2014, 97(11), 3524. 53 Xie L X, Xing J, Tan Z, et al. Journal of Alloys and Compounds, 2018, 758, 14. 54 Fadhlina H, Atiqah A, Zainuddin Z. Materials Today Communications, 2022, 33, 16. 55 Zhang B Y, Wang X P, Cheng X J, et al. Journal of Alloys and Compounds, 2013, 581, 446. 56 Peng L, Gao X Q, Liu X K, et al. Materials Today Communications, 2024, 38, 11.