Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24090006-8    https://doi.org/10.11896/cldb.24090006
  无机非金属及其复合材料 |
硫铝水泥改性固废基胶凝材料性能与水化进程研究
任才富1, 王栋民1,*, 房奎圳2, 王吉祥1, 李晓慧3, 张信龙4
1 中国矿业大学(北京)化学与环境工程学院,北京 100083
2 清华大学土木工程系,北京 100084
3 辽宁石油化工大学环境与安全工程学院,辽宁 抚顺 113005
4 中国建筑东北设计研究院有限公司,沈阳 110000
Study on Properties and Hydration Process of Solid Waste Based Cementitious Materials Modified by Calcium Sulfoaluminate Cement
REN Caifu1, WANG Dongmin1,*, FANG Kuizhen2, WANG Jixiang1, LI Xiaohui3, ZHANG Xinlong4
1 School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China
2 School of Civil Engineering, Tsinghua University, Beijing 100084, China
3 College of Environmental and Safety Engineering, Liaoning University of Petrochemical Technology, Fushun 113005, Liaoning, China
4 China Architecture Northeast Design and Research Institute Co., Ltd., Shenyang 110000, China
下载:  全 文 ( PDF ) ( 21264KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钢渣、矿渣和脱硫石膏为原料制备了固废基胶凝材料,针对其凝结时间长、力学性能不足的问题,提出采用硫铝水泥(CSA)提升固废基胶凝材料性能。通过水化热、XRD、FTIR、TG-DSC、SEM和MIP等测试手段,探究CSA对固废基胶凝材料水化过程、硬化浆体组成及微结构演变的影响机理,并进一步揭示其改性机制。结果表明:CSA掺量为5%(质量分数,下同)时,胶凝材料体系3 d和28 d抗压强度分别达到17.7、31.1 MPa,较空白组提升了21.2%和23.4%。CSA中高活性矿物C4A3快速水化形成AFt,显著缩短固废基胶凝材料的凝结时间。CSA加快了体系水化反应进程,水化诱导期和水化放热峰大幅提前,并使总放热量提高,但掺加CSA会降低浆体初始阶段pH值,一定程度上延缓了矿渣的解离进程。随着水化程度加深,体系中生成了更多的AFt、C-S-H凝胶等水化产物,尤其是反应后期C-S-H凝胶的大量形成,提高了体系的结合水含量和反应程度。体系中针棒状AFt和C-S-H凝胶相互穿插、搭接,填充于孔隙中,细化了孔径,形成更为致密的微结构,从而大幅提升了固废基胶凝材料的力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任才富
王栋民
房奎圳
王吉祥
李晓慧
张信龙
关键词:  硫铝水泥  固废基胶凝材料  抗压强度  水化进程  微结构  改性机制    
Abstract: The solid waste based cementitious materials was mainly prepared from steel slag, slag and desulphurized gypsum, it has a long setting time and insufficient mechanical properties. In view of these problems, proposed a method that using calcium sulfoaluminate cement (CSA) to improve the properties of solid waste based cementitious materials. By means of heat of hydration, XRD, FTIR, TG-DSC, SEM and MIP, the influence mechanism of CSA on the hydration process, hardened paste composition and microstructure evolution of solid waste based cementitious materials was investigated, and the modification mechanism was further revealed. The results show that when the content of CSA is 5% (mass fraction), the 3-day and 28-day compressive strength of the cementitious materials reaches 17.7 MPa and 31.1 MPa, respectively, it increased by 21.2% and 23.4% respectively compared with the blank group. CSA in highly active mineral form AFt C4A3 rapid hydration, significantly shortens the setting time of solid waste based cementitious materials. CSA accelerates the hydration reaction process of the system, greatly advances the hydration induction period and the hydration heat release peak, and increases the total heat release. However, the addition of CSA reduces the initial pH value of the paste and delays the dissociation process of the slag to a certain extent. As the degree of hydration deepens, more AFt, C-S-H gels and other hydration products will be generated in the system, especially the formation of a large number of C-S-H gels in the late stage of the reaction, improving the bound water content and reaction depth of the system. In the system, needle-rod AFt and C-S-H gels interpenetrate and lap with each other, fill the pores, refine the pore size, and form a more dense microstructure, thus greatly improving the mechanical properties of solid waste based cementitious materials.
Key words:  calcium sulfoaluminate cement    solid waste based cementitious materials    compressive strength    hydration process    microstructure    modification mechanism
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TU526  
基金资助: 国家重点研发计划(2019YFC19072);中央高校基本科研业务费(中国矿业大学(北京)博士研究生拔尖创新人才培育基金)(BBJ2024056)
通讯作者:  *王栋民,博士,中国矿业大学(北京)化学与环境工程学院教授、博士研究生导师。长期致力于现代高性能水泥混凝土材料及其化学外加剂的精细化工合成与应用以及工业/矿业固体废弃物处理与生态环境建筑材料制备与应用的研究。wangdongmin@cumtb.edu.cn   
作者简介:  任才富,博士研究生,主要研究方向为水泥外加剂和固废资源化利用,现研究课题为固废基胶凝材料的协同水化机理与应用研究。
引用本文:    
任才富, 王栋民, 房奎圳, 王吉祥, 李晓慧, 张信龙. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J]. 材料导报, 2025, 39(18): 24090006-8.
REN Caifu, WANG Dongmin, FANG Kuizhen, WANG Jixiang, LI Xiaohui, ZHANG Xinlong. Study on Properties and Hydration Process of Solid Waste Based Cementitious Materials Modified by Calcium Sulfoaluminate Cement. Materials Reports, 2025, 39(18): 24090006-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090006  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24090006
1 Busch P, Kendall A, Murphy C W, et al. Resources, Conservation and Recycling, 2022, 182, 106278.
2 Zhang C, Yu B, Chen J, et al. Resources, Conservation and Recycling, 2021, 166, 105355.
3 Gao T, Shen L, Shen M, et al. Journal of Cleaner Production, 2015, 103, 160.
4 Wu K, Shi H, Guo X. Waste Management, 2011, 31(9-10), 2001.
5 Sethurajan M, van Hullebusch E D, Nancharaiah Y V. Journal of environmental Management, 2018, 211, 138.
6 Guo J, Bao Y, Wang M. Waste Management, 2018, 78, 318.
7 Dhoble Y N, Ahmed S. Journal of Material Cycles and Waste Management, 2018, 20, 1373.
8 Rahou J, Rezqi H, EI Ouahabi M, et al. Construction and Building Materials, 2022, 314, 125663.
9 Gołaszewski J, Klemczak B, Gołaszewska M, et al. Journal of Building Engineering, 2023, 66, 105893.
10 Xu C, Ni W, Li K, et al. Construction and Building Materials, 2021, 288, 123111.
11 Xu D, Ni W, Wang Q, et al. Journal of Cleaner Production, 2021, 307, 127262.
12 Wang X, Ni W, Li J, et al. Cement and Concrete Research, 2019, 125, 105893.
13 Cui X W, Ni W, Ren C. Journal of Materials Research, 2017, 31, 687.
崔孝炜, 倪文, 任超. 材料研究学报, 2017, 31(9), 687.
14 Ma X M, Ni W, Liu X. Materials Reports, 2016, 30(16), 135.
马旭明, 倪文, 刘轩. 材料导报, 2016, 30(16), 135.
15 Ren C, Wang J, Duan K, et al. Materials, 2024, 17, 1999.
16 Liu S, Wang L, Gao Y, et al. Thermochimica Acta, 2015, 605, 37.
17 Liu S, Li L. Journal of Thermal Analysis and Calorimetry, 2014, 117, 629.
18 Gao W, MA X, Wang Z, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 389, 230.
19 Grounds T, Nowell D, WilburnF. Journal of Thermal Analysis and Calorimetry, 1995, 45, 385.
20 Lan M Z, Zhao X D, Chen Z F, et al. Bulletin of Silicate, 2017, 36(9), 2958
兰明章, 赵旭东, 陈智丰, 等. 硅酸盐通报, 2017, 36(9), 2958.
21 Sun Z N, Zhou J, Mu R, et al. Bulletin of Silicate, 2019, 38, 2362.
孙正宁, 周健, 慕儒, 等. 硅酸盐通报, 2019, 38(8), 2362.
22 Chen P, Ma B, Tan H, et al. Construction and Building Materials, 2023, 377, 131034.
23 Sun Z, Nie S, Zhou J, et al. Journal of Cleaner Production, 2022, 333, 130094.
24 Idrissi M, Diouri, A, Damidot D, et al. Cement and Concrete Research, 2010, 40, 1314.
25 Matschei T, Bellmann F, Stark J. Advances in Cement Research, 2005, 17, 167.
26 Huang B Y, Cui S P, Wang Y L, et al. Bulletin of Silicate, 2023, 42, 56.
黄炳银, 崔素萍, 王亚丽, 等. 硅酸盐通报, 2023, 42(5).
27 Wang Q, Yan P, Han S. Science China Technological Sciences, 2011, 54, 388
28 Wang Q, Yan P. Construction and Building Materials, 2010, 24, 1134.
29 Gruskovnjak A, Lothenbach B, Winnefeld F, et al. Cement and Concrete Research, 2008, 38, 983.
30 Moghaddam S E, Hejazi V, Hwang S H, et al. Journal of Materials Chemistry A, 2017, 5, 3798.
31 Zhou Y, Hou D, Jiang J, et al. Construction and Building Materials, 2016, 126, 991.
32 Matschei T, Bellmann F, Stark J. Advances in Cement Research, 2005, 17, 167.
33 Erdem E, Ölmez H. Cement and Concrete Research, 1993, 23, 115.
34 Chen Z X, Chu S H, Lee Y S, et al. Journal of Cleaner Production, 2020, 262, 121385.
35 Kazanskaya L F, Smirnova O M, Palomo A, et al. Materials, 202, 14, 403.
36 Hegazy A A, Khalil A A, El-Alfi, E A, et al. Egyptian Journal of Chemistry, 2019, 62, 1145.
37 Sun R, Wang D, Fang Z, et al. Cement and Concrete Composites, 2022, 131, 104588.
38 Wang Q, Yan P, Han S. Science China Technological Sciences, 2011, 54, 388.
39 Hu Y, Ren X, Ye J, et al. Construction and Building Materials, 2022, 346, 128471.
[1] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[2] 陈洋, 李增祎, 吴智, 邓承继, 娄晓明, 李勇庆, 谭嘉琳, 丁军, 余超. 催化剂添加量和温度对催化氮化制备低碳MgO-C耐火材料显微结构演变的影响[J]. 材料导报, 2025, 39(8): 24030031-5.
[3] 钟新宇, 赖俊英, 阮少钦, 钱晓倩, 钱匡亮. 复合早强剂对掺石灰石粉砂浆强度和水化作用的影响[J]. 材料导报, 2025, 39(5): 24010244-8.
[4] 杜宗泽, 王刚, 朱轲, 夏钰东, 谢峰, 欧凯, 倪宇翔. 仿生微结构调控风阻研究进展[J]. 材料导报, 2025, 39(4): 23090080-8.
[5] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[6] 陈苗苗, 赵鸣, 崔承昊, 刘卓承, 陈华, 杜永胜, 邓磊波. Ge对新型低温烧结简单组分ZnBiMnO压敏陶瓷的影响[J]. 材料导报, 2025, 39(18): 24080180-5.
[7] 海然, 崔力, 翟胜田, 刘俊霞, 惠存, 王超圣. 基于文献聚类分析的再生混凝土抗压强度及耐久性最新研究进展[J]. 材料导报, 2025, 39(17): 24050154-9.
[8] 郭长旭, 李晓丽, 解卫东, 李大虎, 王靖丰, 赵晓泽. 电石渣-矿渣基砒砂岩复合土强度及微观机理研究[J]. 材料导报, 2025, 39(17): 24070063-8.
[9] 张会琪, 徐宇, 缪妙, 刘紫琛, 刘贤哲, 黄爱萍, 罗坚义. 柔性电容式压力传感器:聚合物介电材料、微结构及应用[J]. 材料导报, 2025, 39(14): 24050081-11.
[10] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[11] 李少飞, 魏智强, 乔宏霞, 曹辉, 赵辛源, 葸玲玲. 纳米氧化石墨烯与聚合物改性水泥基复合材料性能研究进展[J]. 材料导报, 2025, 39(10): 24040171-12.
[12] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[13] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[14] 吴蒙华, 姜炳春, 肖雨晴, 贾卫平. 功率超声对无掩膜定域性电沉积三维镍质微结构成型过程的影响[J]. 材料导报, 2025, 39(1): 23110271-6.
[15] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed