Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24080215-7    https://doi.org/10.11896/cldb.24080215
  无机非金属及其复合材料 |
一步法构筑石墨化多级孔碳材料及其超级电容储能性能研究
周柯, 王晓明*, 金庆忍, 常彬彬*
广西电网有限责任公司电力科学研究院,南宁 530023
One-step Synthesis of Graphitized Hierarchical Porous Carbons for Energy Storage Performance Study in Supercapacitors
ZHOU Ke, WANG Xiaoming*, JIN Qingren, CHANG Binbin*
Electric Power Research Institute of Guangxi Power Grid Co., Ltd., Nanning 530023, China
下载:  全 文 ( PDF ) ( 14111KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔碳材料目前已成为双电层电容器电极材料的主要候选者。超级电容器所使用的碳材料通常要求具备比表面积大、导电性能好以及离子传输路径有效等特点。然而,这些特征在同一碳基材料中往往存在不兼容性,因此严重限制了碳基电容器的电容性能。本工作提出了一种简便、经济的制备策略,通过一步热处理法将高铁酸钾浸渍的生物质前驱体转化为高石墨化的分级多孔碳材料。高铁酸钾既充当造孔剂又起到石墨化催化剂的作用,同步完成分级孔的构筑和骨架的石墨化。经结构表征,所制备的石墨化分级多孔碳(GPC)同时具有较大的比表面积(1 257.7 m2·g-1)和高度石墨化的骨架结构,解决了两者在同一碳材料中的竞争关系。受益于独特的结构优势,所制备的石墨化分级多孔碳在不同的水系电解液(KOH、H2SO4、Na2SO4)体系中都表现出优异的电化学电容性能。在1 A·g-1的电流密度下,GPC电极在H2SO4、KOH和Na2SO4水系电解液中分别具有354.8、323.9和188.7 F·g-1的质量比电容量。同时,所组装的对称电容器在碱性和中性电解液中也表现出令人满意的电容性能,包括高的比电容量、优异的倍率性能以及高的能量密度和循环稳定性。此外,本工作所开发的制备方法不仅能有效缓解生物质废弃物带来的环境污染问题,还能够将其转化为具有高附加值的碳基储能电极材料,为生物质废弃物的资源化及再利用提供切实可行的范例。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周柯
王晓明
金庆忍
常彬彬
关键词:  石墨化  多级孔  超级电容器    
Abstract: Porous carbons have become the main contender of electrode materials for double-layer capacitors. Carbon materials used in supercapacitors usually require a large specific surface area, high electrical conductivity and efficient ion transport paths. However, such characteristics are usually incompatible in a single carbon material, which greatly restricts the capacitive performance of carbon-based capacitors. Herein, we deve-lop a simple and cost-efficient strategy to convert K2FeO4-impregnated biomass precursor into highly graphitized porous carbons (GPC) with hie-rarchical pores by a one-pot heat-treatment. K2FeO4 works as both a pore-forming agent and graphitization catalyst to fulfill the synchronous hie-rarchical pore generation and graphitization of the skeleton. The resultant GPC material has a large specific surface area (1 257.7 m2·g-1) and a highly graphitized skeleton structure, which solves the competitive relationship in a single carbon material. Benefiting from these unique features, the GPC sample presents superior electrochemical capacitive performance in various aqueous electrolytes (KOH, H2SO4 and Na2SO4). The GPC electrode exhibits satisfactory specific capacitances of 354.8, 323.9 and 188.7 F·g-1in H2SO4, KOH and Na2SO4 electrolytes, respectively. Meanwhile, the assembled GPC-based symmetric capacitors also achieve superb capacitive properties in KOH and Na2SO4 electrolytes, including high capacitance, superior rate capability, high energy density and prominent cycling stability. In addition, our proposed strategy not only alleviates the environmental pollution caused by discarded biowaste, but also obtains high-added-value carbon-based electrodes for supercapacitors in energy storage. Therefore, it demonstrates an example of trash-to-treasure transformation, boosting the utilization of abundant biowaste resources.
Key words:  graphitization    hierarchical pores    supercapacitors
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  TF125.6  
基金资助: 国家重点研发计划(2022YFB3206800)
通讯作者:  *王晓明,硕士,广西电网有限责任公司电力科学研究院高级工程师。目前主要从事智能传感、新型电力系统保护与控制等方面的研究。496484606@qq.com;
常彬彬,博士,副教授。目前主要从事柔性储能器件、智能传感等方面的研究。changbinbin806@163.com   
作者简介:  周柯,博士,广西电网有限责任公司电力科学研究院教授级高级工程师。目前主要从事智能传感、电力芯片、智能配用电等方面的研究。
引用本文:    
周柯, 王晓明, 金庆忍, 常彬彬. 一步法构筑石墨化多级孔碳材料及其超级电容储能性能研究[J]. 材料导报, 2025, 39(18): 24080215-7.
ZHOU Ke, WANG Xiaoming, JIN Qingren, CHANG Binbin. One-step Synthesis of Graphitized Hierarchical Porous Carbons for Energy Storage Performance Study in Supercapacitors. Materials Reports, 2025, 39(18): 24080215-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080215  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24080215
1 Liang R B, Du Y Q, Wu J X, et al. Journal of Solid State Chemistry, 2022, 307, 122845.
2 Zhang Y, Zhang Y Y, Li C E, et al. Coordination Chemistry Reviews, 2024, 519, 216103.
3 Zhang Y, Xue S C, Yang X H, et al. Electrochimica Acta, 2023, 442, 141822.
4 Chang B B, Wang Y L, Pei K M, et al. RSC Advances, 2014, 4, 40546.
5 Zhang X Q, He B, Dong X L, et al. Chemical Industry and Engineering Progress, 2019, 38, 404.
6 Zhu H, Wang X L, Liu X X, et al. Advanced Materials, 2012, 24, 6524.
7 Borchardt L, Oschatz M, Kaskel S. Materials Horizons, 2014, 1, 157.
8 Qian W J, Sun F X, Xu Y H, et al. Energy & Environmental Science, 2014, 7, 379.
9 Peng H, Ma G F, Sun K J, et al. ACS Applied Materials & Interfaces, 2014, 6, 20795.
10 Chang B B, Guo Y Z, Li Y C, et al. Journal of Materials Chemistry A, 2015, 3, 9565.
11 Chang B B, Shi W W, Han S C, et al. Chemical Engineering Journal, 2018, 350, 585.
12 Li Z J, Guo D F, Liu Y Y, et al. Chemical Engineering Journal, 2020, 397, 125418.
13 Shi W W, Chang B B, Yin H, et al. Sustainable Energy & Fuels, 2019, 3, 1201.
14 Okamura M, Takagaki A, Toda M, et al. Chemistry of Materials, 2006, 18, 3039.
15 Chang B B, Yang B C, Guo Y Z, et al. RSC Advances, 2015, 5, 2088.
16 He X J, Zhao N, Qiu J S, et al. Journal of Materials Chemistry A, 2013, 1, 9440.
17 Dong X M, Jin H L, Wang R Y, et al. Advances Energy Materials, 2018, 8, 1702695.
18 Zhao Y Q, Lu M, Tao P Y, et al. Journal of Power Sources, 2016, 307, 391.
19 Kim H, Fortunato M E, Xu H, et al. The Journal of Physical Chemistry C, 2011, 115, 20481.
20 Wang D W, Li F, Liu M, et al. Angewandte Chemie International Edition, 2008, 47, 373.
21 Zhang W L, Liu D C, Lin H B, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 511, 294.
22 Wang Q, Yan J, Wang Y B, et al. Carbon, 2014, 67, 119.
23 Jackel N, Simon P, Gogotsi Y, et al. ACS Energy Letters, 2016, 1, 1262.
24 Huang J. Electrochimica Acta, 2018, 281, 170.
[1] 徐桂培, 刘浩, 赖洁文, 卢毅锋, 黄辉, 易宗琳, 邸会芳, 王振兵, 苏方远, 陈成猛. 高电压双电层超级电容器电解质的研究进展[J]. 材料导报, 2025, 39(9): 24030012-8.
[2] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[3] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[4] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[5] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[6] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[7] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[8] 高雅倩, 赵亚娟, 谢会东, 胡昌宇, 王逸博, 王康康, 杨厂. 高比电容MOF衍生的介孔球状Co3O4/NiO/CuO[J]. 材料导报, 2024, 38(12): 22110033-7.
[9] 王琼, 黄自知, 胡云楚, 袁利萍, 文瑞芝, 杨婷. 胡萝卜基分级多孔炭材料的制备及电化学性能研究[J]. 材料导报, 2023, 37(9): 21060091-7.
[10] 王赫, 胡程文, 王洪杰, 阮芳涛, 储长流. 废弃复材树脂高值化利用:超级电容器电极应用[J]. 材料导报, 2023, 37(6): 21090103-5.
[11] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[12] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[13] 周亚丽, 雷西萍, 樊凯, 于婷, 关晓琳. 冷冻干燥辅助一步碳化-活化壳聚糖基多孔碳的制备及电化学性能[J]. 材料导报, 2023, 37(5): 21090175-8.
[14] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[15] 黄贤敏, 李紫薇, 张晓妍, 刘慧, 高红艳, 汪海. 核壳结构的V10O24·12H2O@ACFC:一种高性能对称超级电容器电极材料[J]. 材料导报, 2023, 37(21): 22050088-8.
[1] Guang MA,Xin CHEN,Licheng LU,Dongqun XIN,Li MENG,Hao WANG,Ling CHENG,Fuyao YANG. Monte Carlo Simulation of the Evolution of Goss Texture in Secondary Recrystallization of Thin Gauge Grain Oriented Silicon Steel[J]. Materials Reports, 2018, 32(2): 313 -315 .
[2] CHEN Jian, XU Hui. Research Progress of Graphene and Its Nanocomposites as Anodes for Lithium Ion Batteries[J]. Materials Reports, 2017, 31(9): 36 -44 .
[3] WANG Tiantian, XU Mengjia, XU Jijin, YU Chun, LU Hao. Influence of Second Welding Thermal Cycle on Reheat Cracking Sensitivity of CGHAZ in T23 Steel[J]. Materials Reports, 2017, 31(12): 56 -59 .
[4] XIE Jiale, YANG Pingping, LI Chang Ming. Stable and High-efficient α-Fe2O3 Based Photoelectrochemical Water Splitting: Rational Materials Design and Charge Carrier Dynamics[J]. Materials Reports, 2018, 32(7): 1037 -1056 .
[5] YANG Shicong, YAO Guowen, ZHANG Jinquan, SHI Kang. The Corrosion Fatigue Characteristic of Steel Strand Experiencing an Artificial Accelerated Salt Fog Ageing[J]. Materials Reports, 2018, 32(12): 1988 -1993 .
[6] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[7] LI Xiuli, TIE Shengnian. Effect of Quick-dissolving and High-viscosity Carboxymethyl Cellulose Sodium on Properties of Glauber’s Salt-based Composites Phase Change Energy Storage Materials with Different Phase Transition Temperature Gradient[J]. Materials Reports, 2018, 32(22): 3848 -3852 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] REN Xiuxiu, ZHU Yiju, ZHAO Shengxiang, HAN Zhongxi, YAO Lina. The Relationship Between Micromechanical Property and Friction Property of Four Kinds of Energetic Crystals[J]. Materials Reports, 2019, 33(z1): 448 -452 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed