Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050081-11    https://doi.org/10.11896/cldb.24050081
  高分子与聚合物基复合材料 |
柔性电容式压力传感器:聚合物介电材料、微结构及应用
张会琪, 徐宇, 缪妙, 刘紫琛, 刘贤哲*, 黄爱萍, 罗坚义*
五邑大学应用物理与材料学院,柔性传感材料与器件研究开发中心,广东 江门 529020
Flexible Capacitive Pressure Sensor:Polymeric Dielectric Materials, Microstructures and Applications
ZHANG Huiqi, XU Yu, MIAO Miao, LIU Zichen, LIU Xianzhe*, HUANG Aiping, LUO Jianyi*
Research Center of Flexible Sensing Materials and Devices, School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China
下载:  全 文 ( PDF ) ( 82310KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着万物互联时代的到来,柔性电容式压力传感器因其高灵敏度、高稳定性和低功耗等特性在人机交互、健康监测以及可穿戴电子等领域拥有巨大的应用前景。但如何通过传感层材料和微结构的选择和设计来大规模制备低成本、高灵敏度和宽检测范围的柔性电容式压力传感器仍然是一个巨大的挑战。本文聚焦于近年来柔性电容式压力传感器的研究进展,从传感机理出发,通过聚合物介电材料的选择及优化和微结构设计来实现灵敏度和检测范围的调控,以期设计出满足实际应用需求的柔性压力传感器。最后,对不同压力检测范围的潜在应用进行总结和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张会琪
徐宇
缪妙
刘紫琛
刘贤哲
黄爱萍
罗坚义
关键词:  柔性电子  电容式压力传感器  聚合物介电材料  微结构设计    
Abstract: The advent of artificial intelligence (AI) has sparked considerable interest in intelligence within human society. Flexible sensors, a pivotal component of the interconnection between the physical and digital worlds, have undergone a metamorphosis from a single sensing function to sophisticated integrated systems. Flexible capacitive pressure sensors have emerged as a prominent category of flexible pressure sensors due to their high sensitivity, low power consumption, high stability, easy integration, etc., which have significant potential in the fields of human-computer interaction, health monitoring, and so on. Despite the significant progress that has been made in the field of flexible capacitive pressure sensors, the trade-off between the sensitivity and the detection range remains a critical challenge in practical application. In this paper, the latest developments in the exploitation of flexible capacitive pressure sensors are reviewed in terms of sensing mechanism, selection of sensing materials, structural design and their advanced applications. First, based on these sensing mechanisms, the selection of composition materials in flexible capacitive pressure sensors to implement the optimization of sensing performance is emphatically presented. Second, the well-designed structures applied to the composition analysis are also overviewed, such as the surface microstructure, porous structure, and multilayer structure. Finally, the potential application scenarios of flexible capacitive pressure sensors in different pressure detection ranges are summarized and prospected.
Key words:  flexible electronics    capacitive pressure sensor    polymeric dielectric material    microstructure design
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TB-33  
基金资助: 广东省基础与应用基础研究基金(2022A1515110621);广东省创新强校工程基金(2021ZDJS094);广东省工程技术研究中心(2021J020);五邑大学创新创业基金(2023CX19)
通讯作者:  * 刘贤哲,博士,五邑大学讲师、硕士研究生导师。目前主要从事柔性传感材料与器件、喷墨印刷柔性电子器件等方面的研究工作。liuxianzhe@wyu.edu.cn
罗坚义,博士,五邑大学教授、博士研究生导师。目前主要从事柔性传感材料与器件应用(柔性触觉传感、温度传感、气压传感和弯曲传感等)、纳米功能材料合成等方面的研究工作。luojiany@mail3.sysu.edu.cn   
作者简介:  张会琪,五邑大学应用物理与材料学院硕士研究生,在刘贤哲博士、罗坚义教授的指导下进行研究。目前主要研究领域为聚合物基柔性电容式压力传感器。
引用本文:    
张会琪, 徐宇, 缪妙, 刘紫琛, 刘贤哲, 黄爱萍, 罗坚义. 柔性电容式压力传感器:聚合物介电材料、微结构及应用[J]. 材料导报, 2025, 39(14): 24050081-11.
ZHANG Huiqi, XU Yu, MIAO Miao, LIU Zichen, LIU Xianzhe, HUANG Aiping, LUO Jianyi. Flexible Capacitive Pressure Sensor:Polymeric Dielectric Materials, Microstructures and Applications. Materials Reports, 2025, 39(14): 24050081-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050081  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050081
1 Huang J, Wang H, Li J, et al. ACS Materials Letters, 2022, 4(11), 2261.
2 Li X, Liu Y, Ding Y, et al. ACS Applied Materials & Interfaces, 2024, 16(10), 12974.
3 Zhang Y, Zhou X, Zhang N, et al. Nature Communications, 2024, 15(1), 3048.
4 Li Y, Wei Y, Yang Y, et al. Research, 2022, 2022, 0002.
5 Yu H, Liu Y, Zhou G, et al. ACS Sensors, 2023, 8(11), 4391.
6 Mukherjee T, Gupta D. Communications Engineering, 2023, 2(1), 57.
7 Min S, Kim D H, Joe D J, et al. Advanced Materials, 2023, 35(26), 2301627.
8 Lei H, Chen Y, Gao Z, et al. Journal of Materials Chemistry A, 2021, 9(36), 20100.
9 Song R, Ren P, Liu Y, et al. Advanced Materials Technologies, 2023, 8(14), 2202140.
10 Li Q, Chen D, Miao J, et al. Sensors and Actuators A:Physical, 2024, 366, 114991.
11 Hong S H, Chen T, Wang G, et al. Chemical Engineering Journal, 2023, 471, 144429.
12 Ali M, Hoseyni S M, Das R, et al. Advanced Materials Technologies, 2023, 8(15), 2300347.
13 Yao C, Sun T, Huang S, et al. ACS Nano, 2023, 17(23), 24242.
14 Basarir F, Madani Z, Vapaavuori J. Advanced Materials Interfaces, 2022, 9(31), 2200866.
15 Bao Y, Xu J, Gou R, et al. Progress in Chemistry, 2023, 35(5), 709 (in Chinese).
鲍艳, 许佳琛, 郭茹月, 等. 化学进展, 2023, 35(5), 709.
16 Chen R, Luo T, Wang J, et al. Nature Communications, 2023, 14(1), 6641.
17 Fu X, Zhang J, Kang Y, et al. Nanoscale, 2021, 13(44), 18780.
18 Liu S Y, Lu J G, Shieh H P D. IEEE Sensors Journal, 2018, 18(5), 1870.
19 Zhao S, Ran W, Wang D, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 32023.
20 Qiu J, Guo X, Chu R, et al. ACS Applied Materials & Interfaces, 2019, 11(43), 40716.
21 Zhang D, Wang X, Wu Y, et al. Advanced Materials Technologies, 2021, 6(8), 2100106.
22 Kurup L A, Arthur J N, Yambem S D, et al. ACS Applied Electronic Materials, 2022, 4(8), 3962.
23 Lin X, Xue H, Li F, et al. ACS Applied Materials & Interfaces, 2022, 14(27), 31385.
24 Yu P, Li X, Li H, et al. ACS Applied Materials & Interfaces, 2021, 13(20), 24062.
25 Tay R Y, Li H, Lin J, et al. Advanced Functional Materials, 2020, 30(10), 1909604.
26 Wang Z, Wang S, Zeng J, et al. Small, 2026, 12(28), 3827.
27 Chittibabu S K, Chintagumpala K. Materials Science in Semiconductor Processing, 2022, 151, 106976.
28 Masihi S, Panahi M, Maddipatla D, et al. ACS Sensors, 2021, 6(3), 938.
29 Kwon D, Lee T I, Shim J, et al. ACS Applied Materials & Interfaces, 2016, 8(26), 16922.
30 Shi Y, Lü X, Zhao J, et al. Micromachines, 2022, 13(2), 223.
31 Yu Y, Zheng G, Dai K, et al. Materials Horizons, 2021, 8(3), 1037.
32 Zhao K, Han J, Ma Y, et al. Nanomaterials, 2023, 13(4), 701.
33 Ha K H, Zhang W Y, Jang H, et al. Microsystems & Nanoengineering, 2021, 33(48), 2103320.
34 Gao H, Chen T. Discover Nano, 2023, 18(1), 17.
35 Yu H, Guo H, Wang J, et al. Advanced Science, 2024, 11(6), 2305883.
36 Mannsfeld S C, Tee B C, Stoltenberg R M, et al. Nature Materials, 2010, 9(10), 859.
37 Kwon D, Lee T I, Shim J, et al. ACS Applied Materials & Interfaces, 2016, 8(26), 16922.
38 Shi Y, Lyu X, Zhao J, et al. Micromachines, 2022, 13(2), 223.
39 Niu H, Wei X, Li H, et al. Advanced Science, 2024, 11(3), 2305528.
40 Zhu Y C, Wu Y G, Wang G S, et al. Organic Electronics, 2020, 84, 105759.
41 Cui X H, Chen J W, Wu W, et al. Nano Energy, 2022, 95, 107022.
42 Zhang P, Zhang J, Li Y X, et al. Journal of Physics D:Applied Physics, 2021, 54(46), 465401.
43 Nie L, Zhang L, Di X, et al. Vacuum, 2022, 205, 111423.
44 Ji B, Zhou Q, Hu B, et al. Advanced Materials, 2021, 33, e2100859.
45 Zhao S, Ran W, Wang D, et al. ACS Applied Materials & Interfaces, 2020, 12(28), 32023.
46 刘贤哲, 缪妙, 张会琪, 等. 中国专利, 2024103131037, 2024.
47 Nie L, Zhang L, Di X, et al. Vacuum, 2022, 205, 111423.
48 Pan S Y, Zhang T, Zhang Cheng, et al. Lab on a Chip, 2024, 24, 1668.
49 Su M, Fu J T, Liu Z X, et al. ACS Applied Materials & Interfaces, 2023, 15, 48683.
50 Yuan Y M, Liu B H, Adibeig M R, et al. Advanced Materials, 2024, 36(11), 2310429.
51 Zhang L, Zhang S, Wang C, et al. ACS Sensors, 2021, 6, 2630.
52 Ma Y, Li Z, Tu S, et al. Advanced Functional Materials, 2024, 34(8), 2309792.
53 Zhou Y, Zhu W, Hu F, et al. Materials Research and Application, 2023, 17(2), 323(in Chinese).
周廷亮, 朱伟刚, 胡凤鸣, 等. 材料研究与应用, 2023, 17(2), 323.
54 Ma L, Yu X, Yang Y, et al. Journal of Materiomics, 2020, 6(2), 321.
55 Han R, Liu Y, Mo Y, et al. Advanced Functional Materials, 2023, 33(51), 2305531.
56 Zhang Y J, Gao M, Gao C J, et al. Composites Science and Technology, 2023, 232, 109863.
57 Bae G Y, Han J T, Lee G, et al. Advanced Materials, 2018, 30(43), 1803388.
58 Ji B, Zhou Q, Lei M, et al. Small, 2021, 17(43), 2103312.
59 Kim S W, Oh G Y, Lee K I, et al. Sensors, 2022, 22(19), 7390.
60 Ma Z, Zhang K, Yang S, et al. Composites Science and Technology, 2022, 227, 109595.
61 Li W, Jin X, Zheng Y, et al. NPJ Flexible Electronics, 2019, 3(1).
62 Hwang J, Kim Y, Yang H, et al. Composites Part B:Engineering, 2021, 211, 108607.
63 Niu H, Wei X, Li H, et al. Advanced Science, 2024, 11(3), 2305528.
64 Li L, Zhu G, Wang J, et al. Nano Energy, 2023, 105, 108012.
65 Yang R, Dutta A, Li B, et al. Nature Communications, 2023, 14(1), 2907.
66 Ma Y, Li Z, Tu S, et al. Advanced Functional Materials, 2024, 34(8), 2309792.
67 Zhang P, Zhang J, Li Y X, et al. Journal of Physics D:Applied Physics, 2021, 54(46), 465401.
68 Ma L, Yu X, Yang Y, et al. Journal of Materiomics, 2020, 6(2), 321.
69 Hsieh G W, Chien C Y. Polymers, 2023, 15(18), 3816.
70 Su Q, Zou Q, Li Y, et al. Science Advances, 2021, 7(48), eabi4563.
71 Yu Q, Zhang J. Micromachines, 2022, 14(1), 111.
72 Zhang M, Gu M, Shao L, et al. ACS Applied Materials & Interfaces, 2023, 15, 15884.
73 Yang Y, Dang Z M, Li Q, et al. Advanced Science, 2020, 7(21), 2002131.
74 Tao J, Dong M, Li L, et al. Microsystems & Nanoengineering, 2020, 6(1), 62.
75 Liu W, Xiang F, Mei D, et al. Advanced Materials Technologies, 2024, 9(4), 2301685.
76 Liu Q, Liu Y, Shi J, et al. Nano-Micro Letters, 2022, 14, 1.
[1] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[2] 门海蛟, 宋健尧, 黄秉经, 李建昌. 柔性可穿戴电子应变传感器的研究进展[J]. 材料导报, 2023, 37(21): 22030317-23.
[3] 田玉玉, 何韧, 吴菊英, 钟卫洲, 张凯. 电容式柔性压力传感器的性能优化原理及研究进展[J]. 材料导报, 2023, 37(16): 21110277-14.
[4] 杨文冬, 孙浩强, 南敬昌, 刘蕊. 小型化柔性印制天线:材料、工艺及应用[J]. 材料导报, 2023, 37(12): 21070182-13.
[5] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[6] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[7] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[8] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[9] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[10] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[11] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[12] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[13] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed