Please wait a minute...
材料导报  2025, Vol. 39 Issue (14): 24050166-6    https://doi.org/10.11896/cldb.24050166
  无机非金属及其复合材料 |
蒸压砂加气混凝土损伤本构模型研究
权文立1, 黄炜1,*, 唐达1, 孙文博2, 苗欣蔚3, 侯莉娜4
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学南澳大学安德学院,西安 710055
3 西安建筑科技大学理学院,西安 710055
4 西安工业大学建筑工程学院,西安 710055
Study on the Damage Constitutive Model of Sand Autoclaved Aerated Concrete
QUAN Wenli1, HUAG Wei1,*, TANG Da1, SUN Wenbo2, MIAO Xinwei3, HOU Lina4
1 School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
2 Xi'an University of Architecture & Technology of South Australia An De College, Xi'an 710055, China
3 School of Science, Xi'an University of Architecture & Technology, Xi'an 710055, China
4 College of Architecture Engineering, Xi'an Technological University, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 4395KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为建立蒸压砂加气混凝土(SAAC)单轴受压损伤本构模型,本工作通过试验得到了SAAC单轴单调及循环荷载作用下的应力-应变曲线,分析了塑性应变与卸载点应变、弹性能与塑性耗散能之间的关系。随后从微元强度角度定义损伤变量,建立了基于Weibull分布的损伤本构模型,推导了模型参数的计算式;考虑了SAAC孔壁挤压密实后的刚化效应及微元体破坏后可传递部分应力的影响和SAAC应力-应变曲线的残余承载力,引入损伤修正系数β和损伤阈值γ对模型进行修正;同时,考虑弹性损伤与塑性损伤,从能量耗散角度定义损伤变量,确定了塑性自由能与弹性自由能的内变量函数,建立了基于Weibull分布的损伤本构模型,并通过试验数据拟合得到了模型的参数;最后对比了两种模型的损伤演化特征。结果表明,建立的两种损伤本构模型与试验结果符合较好,但基于能量的损伤本构模型在SAAC损伤演化方面更接近实际情况,且具有明确的物理意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
权文立
黄炜
唐达
孙文博
苗欣蔚
侯莉娜
关键词:  蒸压砂加气混凝土(SAAC)  塑性应变  Weibull分布  损伤本构模型  微元体  能量    
Abstract: To establish the uniaxial compressive damage constitutive model of sand autoclaved aerated concrete (SAAC), the stress-strain curves of SAAC under uniaxial monotonic and cyclic loading were obtained by experiment. Then the relationship between plastic strain and unloading point strain was analyzed, as well as the relationship between elastic energy and plastic dissipation energy. Subsequently, a damage variable was defined from the perspective of microelements strength, and then a damage constitutive model based on Weibull distribution was established, and the corresponding model parameters were conducted. Considering the stiffening effect of pore wall after compression, the effect of transmitting partial stress of micro element after its failure, and residual bearing capacity of the curve, a damage correction coefficient β and a damage threshold γ were introduced to modify this model. Meanwhile, considering the elastic and plastic damage, a damage variable was defined from the perspective of energy dissipation, an internal variable function for plastic free energy and elastic free energy were determined, and then from energy aspect, a damage constitutive model based on Weibull distribution was established. The model parameters were fitted based on experimental data. Finally, the damage evolution characteristics of the two models were compared. The results indicate that the two damage constitutive mo-dels are both in good agreement with the experimental results. However, the damage constitutive model based on energy is closer to the fact in the damage evolution and has clear physical significance.
Key words:  sand autoclaved aerated concrete (SAAC)    plastic strain    Weibull distribution    damage constitutive model    microelement    energy
出版日期:  2025-07-25      发布日期:  2025-07-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金项目(52378193);国家自然科学基金青年项目(52308203);西安建筑科技大学优秀博士学位论文培育基金(2023XYBPY0010);陕西省杰出青年科学基金项目(2018JC-025);陕西省科技计划项目(2021JM-435)
通讯作者:  * 黄炜,西安建筑科技大学土木工程学院教授、博士研究生导师。目前主要从事绿色装配式复合结构抗震性能研究。qqhuangwei2006@163.com   
作者简介:  权文立,现为西安建筑科技大学土木工程学院博士研究生,在黄炜教授的指导下进行研究。目前主要研究领域为固废建筑材料和装配式预制部品力学性能。
引用本文:    
权文立, 黄炜, 唐达, 孙文博, 苗欣蔚, 侯莉娜. 蒸压砂加气混凝土损伤本构模型研究[J]. 材料导报, 2025, 39(14): 24050166-6.
QUAN Wenli, HUAG Wei, TANG Da, SUN Wenbo, MIAO Xinwei, HOU Lina. Study on the Damage Constitutive Model of Sand Autoclaved Aerated Concrete. Materials Reports, 2025, 39(14): 24050166-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050166  或          https://www.mater-rep.com/CN/Y2025/V39/I14/24050166
1 He T S, Xu R S, Da Y Q, et al. Journal of Cleaner Production, 2016, 234, 559.
2 Bonakdar A, Babbitt F, Mobasher B. Cement and Concrete Compo-sites, 2013, 38, 82
3 Qu X L, Zhao X G. Construction and Building Materials, 2017, 135, 505.
4 Cai L X, Ma B G, Li X G, et al. Journal of Cleaner Production, 2016, 127, 162.
5 Huang W, Quan W L, Bu X Z, et al. Construction and Building Materials, 2023, 408, 133818.
6 Taban Shams, Georg Schober, Detlef Heinz, et al. Construction and Building Materials, 2021, 287, 123072.
7 Peng J Z, Peng X Q, Gui M M, et al. Materials Reports, 2011, 25(2), 125 (in Chinese).
彭军芝, 彭小芹, 桂苗苗, 等. 材料导报, 2011, 25(2), 125.
8 Chen G L, Li F L, Geng Y J, et al. Construction and Building Materials, 2021, 294, 123572.
9 Huang W, An Y J N, Miao X W, et al. Structures, 2024, 61, 106067.
10 Miao X W, Huang W, Fan Z H, et al. Engineering Structures, 2024, 300, 117236.
11 Luo B. Journal of Hunan University (Natural Science), 2023, 50(1), 36 (in Chinese).
罗斌. 湖南大学学报(自然科学版), 2023, 50(1), 36.
12 Meng H R, Yao Q F, Zhang Y. Concrete, 2007(9), 80 (in Chinese).
孟宏睿, 姚谦峰, 张荫. 混凝土, 2007(9), 80.
13 Xiong Y Q, Yao Q F. Sichuan Building Science, 2010, 36(2), 228.
熊耀清, 姚谦峰. 四川建筑科学研究, 2010, 36(2), 228.
14 Sun J, Fan J H, Chen A, et, al. Journal of Building Engineering, 2022, 60, 105213.
15 National Standardization Administration. Test method for performance of autoclaved aerated concrete:GB/T 11969-2020, Standard Press of China, China, 2020 (in Chinese).
国家标准化管理委员会. 蒸压加气混凝土性能试验方法:GB/T 11969-2020, 中国标准出版社, 2020.
16 Chen Y L, Li H, Ye P H, et al. Acta Materiae Compositae Sinica, 2022, 39(11), 5574 (in Chinese).
陈宇良, 李浩, 叶培欢, 等. 复合材料学报, 2022, 39(11), 5574.
17 Xu L H, Huang B, Li B, et al. China Civil Engineering Journal, 2019, 52(4), 1 (in Chinese).
徐礼华, 黄彪, 李彪, 等. 土木工程学报, 2019, 52(4), 1.
18 Liu Z X. Graded loading and unloading constitutive and energy evolution of rock. Master's Thesis, Anhui University of Science and Technology, China, 2019 (in Chinese).
刘之喜. 岩石分级加卸载本构及能量演化规律. 硕士学位论文, 安徽理工大学, 2019.
19 Kachanov L M. Introduction to continuum damage mechanics, Kluwer Academic Publishers, Netherlands, 1986, pp. 135.
20 Guan X, Niu D T, Wu B, et al. Journal of Xi'an University of Architecture and Technology (Natural Science Edition), 2015, 47(5), 678 (in Chinese).
关虓, 牛荻涛, 吴博, 等. 西安建筑科技大学学报(自然科学版), 2015, 47(5), 678.
21 Li B, Huang W, Li C N, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(1), 17 (in Chinese).
李斌, 黄炜, 李昌宁, 等. 华中科技大学学报(自然科学版), 2017, 45(1), 17.
22 Cao W G, Zhao H, Zhang L, et al. Chinese Journal of Rock Mechanics and Engineering, 2008(6), 1148 (in Chinese).
曹文贵, 赵衡, 张玲, 等. 岩石力学与工程学报, 2008(6), 1148.
23 Cao W G, Zhang S. Journal of Hunan University (Natural Sciences), 2005(1), 43 (in Chinese).
曹文贵, 张升. 湖南大学学报(自然科学版), 2005(1), 43.
24 Liu L, Liu P, Chen G X, et al. ACI Materials Journal, 2021, 2, 118.
25 Yang T, Xu C, Wang B X, et al. China Mining Magazine, 2007(12), 104 (in Chinese).
杨同, 徐川, 王宝学, 等. 中国矿业, 2007(12), 104.
26 Li Z H. Damage model and seismic damage description of high-rise reinforced concrete structures. Ph. D. Thesis, Harbin Institute of Technology, China, 2010 (in Chinese).
李祚华. 高层钢筋混凝土结构损伤模型及地震损伤描述. 博士学位论文, 哈尔滨工业大学, 2010.
[1] 王露燕, 熊正烨, 钟国涛, 黄劲哲, 刘昊, 郭竞渊. 可调谐Y2MgTiO6:Tm3+,Dy3+荧光粉的发光特性和能量转移机理[J]. 材料导报, 2025, 39(8): 23120260-8.
[2] 姜彦杰, 刘浩天, 刘海峰, 车佳玲, 杨维武. 硫酸盐冻融后沙漠砂混凝土单轴受压力学性能试验研究[J]. 材料导报, 2025, 39(7): 23110222-11.
[3] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[4] 郑森哲, 董文坤, 陈东, 凌世生, 乔旭升, 樊先平. 大斯托克斯位移荧光染料研究进展[J]. 材料导报, 2025, 39(14): 24060129-8.
[5] 蒋佳骏, 吴张永, 孟仙, 刘大仲, 母昆杨, 刘文龙, 朱启晨, 蔡昌礼. 利用纳米Mo改善液态金属基SiC/石墨烯混合纳米流体分散性与流动性[J]. 材料导报, 2025, 39(10): 24030153-11.
[6] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[7] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[8] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[9] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[10] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[11] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[12] 严鹏志, 范鹏贤, 王宇, 邢文政. 极端不利环境下氧化铝薄壁空心球粒抗冲击吸波性能试验研究[J]. 材料导报, 2024, 38(23): 23080113-6.
[13] 苗立国, 邢飞, 史建军, 柴媛欣, 闫成鑫, 卞宏友, 孙海江. 基于边缘梯度搜索的激光定向能量沉积熔池尺寸提取方法[J]. 材料导报, 2024, 38(2): 22070278-7.
[14] 王俊, 相泽辉, 牛建刚, 许文明. CFRP条带和混凝土帆布联合加固混凝土短柱声发射性能研究[J]. 材料导报, 2024, 38(14): 22100117-8.
[15] 高华兴, 张红旗, 李璇. 准二维钙钛矿中结晶调控与低阈值微纳激光器[J]. 材料导报, 2024, 38(12): 22110309-5.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed