Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030153-11    https://doi.org/10.11896/cldb.24030153
  金属与金属基复合材料 |
利用纳米Mo改善液态金属基SiC/石墨烯混合纳米流体分散性与流动性
蒋佳骏1, 吴张永1,*, 孟仙2,3, 刘大仲3, 母昆杨3, 刘文龙3, 朱启晨1, 蔡昌礼3
1 昆明理工大学机电工程学院,昆明 650500
2 昆明理工大学材料科学与工程学院,昆明 650093
3 云南科威液态金属谷研发有限公司,云南 宣威 655400
Improving the Dispersibility and Flowability of Liquid Metal-based SiC/Graphene Hybrid Nanofluids Using Nano Mo
JIANG Jiajun1, WU Zhangyong1,*, MENG Xian2,3, LIU Dazhong3, MU Kunyang3, LIU Wenlong3, ZHU Qichen1, CAI Changli3
1 Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
3 Yunnan Kewei Liquid Metal Valley R & D Co., Ltd., Xuanwei 655400, Yunnan, China
下载:  全 文 ( PDF ) ( 53753KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对现有方法制备的液态金属基纳米流体存在分散性和流动性难以平衡的问题,本工作利用Mo纳米颗粒极高的表面能来改善液态金属与非金属混合纳米颗粒的相互作用能量关系,以期在保证流动性的前提下提高液态金属基混合纳米流体的分散性。理论分析了Mo纳米颗粒与液态金属在0.2~0.4 nm短特征距离的能量势垒变化,以及由此对SiC/石墨烯混合纳米颗粒的“捕获”机制,并设计润湿性实验和“捕获”实验予以证实。进一步分析了液态金属中Mo纳米颗粒与混合纳米颗粒之间在0.4~10 nm长特征距离范围内的相互作用,并得出正范德华势排斥作用带来的分散行为。以Ga68.5In21.5Sn10为基础液,SiC纳米颗粒和物理法石墨烯(Graphene)为分散相,Mo纳米颗粒为中介物,制备液态金属基SiC/石墨烯-Mo混合纳米流体,遴选出稳定性良好的样品,利用SEM+EDS、涡流电导率仪、热常数分析仪和特制流变仪分析纯液态金属、新方法样品与传统氧化法样品的性能差异,并搭建液压回路测试不同介质条件下齿轮泵的温升特性,结果表明,新方法制备的样品分散性更好,导电性、导热性和流动性更佳,在齿轮泵中温升更缓。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蒋佳骏
吴张永
孟仙
刘大仲
母昆杨
刘文龙
朱启晨
蔡昌礼
关键词:  液态金属  混合纳米流体  分散性  流动性  能量势垒  润湿性  范德华势    
Abstract: Facing the long-standing challenges of poor dispersion and flowability in liquid metal-based nanofluids, we propose to use the extremely high surface energy of Mo nanoparticles to improve the interaction energy relationship between liquid metal and non-metal mixed nanoparticles. This method can enhance the dispersion and flowability of liquid metal-based hybrid nanofluids. Theoretical analysis confirmed the energy barrier changes caused by the weak alloying of Mo nanoparticles with liquid metal at a short characteristic distance of 0.2—0.4 nm, as well as the “capture” mechanism of SiC/graphene mixed nanoparticles. Wettability experiments and “capture” experiments were designed to validate this mec-hanism. The interaction between Mo nanoparticles and mixed nanoparticles in liquid metal was analyzed in a long characteristic distance range of 0.4—10 nm, and the dispersion behavior by the repulsive positive van der Waals potential was observed. A liquid metal-based SiC/graphene hybrid nanofluid was prepared using Ga68.5In21.5Sn10 as the base fluid, SiC nanoparticles and physically prepared graphene as the dispersed phase, and Mo nanoparticles as the intermediate. A vacuum melting furnace was used for electromagnetic heating to prepare the liquid metal-based SiC/graphene hybrid nanofluid. SEM+EDS and a specially designed high-temperature rheometer were combined to analyze the differences in basic properties between the novel prepared sample and the sample prepared by traditional oxidation method. The results indicate that the sample prepared by the new method has better dispersion, conductivity, thermal conductivity, and flowability, and has a slower temperature rise in gear pumps.
Key words:  liquid metal    hybrid nanofluid    dispersion    flowability    energy barrier    wettability    van der Waals potential
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51165012);四川省区域创新合作项目(2022YFQ0084);昆明理工大学分析测试基金(2021P20203103003)
通讯作者:  *吴张永,昆明理工大学机电工程学院教授、博士研究生导师,1986年在昆明工学院获学士学位,1995年在昆明理工大学获硕士学位。长期从事流体传动与控制、机械制造、有色金属矿山及冶金装备领域的教学及科研工作。zhyongwu63@163.com   
作者简介:  蒋佳骏,2018年7月毕业于上海电机学院,获工学学士学位,2024年12月毕业于昆明理工大学,获工学博士学位。现任教于西华大学机械工程学院,主要从事新型液压介质及元件、极端环境液压传动技术、先进制造技术的研究。
引用本文:    
蒋佳骏, 吴张永, 孟仙, 刘大仲, 母昆杨, 刘文龙, 朱启晨, 蔡昌礼. 利用纳米Mo改善液态金属基SiC/石墨烯混合纳米流体分散性与流动性[J]. 材料导报, 2025, 39(10): 24030153-11.
JIANG Jiajun, WU Zhangyong, MENG Xian, LIU Dazhong, MU Kunyang, LIU Wenlong, ZHU Qichen, CAI Changli. Improving the Dispersibility and Flowability of Liquid Metal-based SiC/Graphene Hybrid Nanofluids Using Nano Mo. Materials Reports, 2025, 39(10): 24030153-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030153  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030153
1 Mehta B, Subhedar D, Panchal H, et al. Journal of Molecular Liquids, 2022, 364, 120034.
2 Kong L, Sun J, Bao Y. RSC Advances, 2017, 7(21), 12599.
3 Hyounes H, Mao M, Murshed S M S, et al. Applied Thermal Engineering, 2022, 207, 118202.
4 Guo C, Wu Z, Wang X, et al. The International Journal of Advanced Manufacturing Technology, 2021, 116, 3315.
5 Yaghoub M, Saeed Z H, Leila K. Tribology International, 2020, 142, 105995.
6 Jiang J, Wu Z, Zhu Q. Materials Reports, 2023, 37(20), 44 (in Chinese).
蒋佳骏, 吴张永, 朱启晨. 材料导报, 2023, 37(20), 44.
7 Wang Z, Wu Z, Xu C, et al. Machine Tool & Hydraulics, 2023, 51(20), 1 (in Chinese).
王志强, 吴张永, 徐初旭, 等. 机床与液压, 2023, 51(20), 1.
8 Zhao X, Zhang S, Zhou C, et al. Computers & Fluids, 2015, 106, 33.
9 Yin Y B. Theory and application of advanced hydraulic component, Shanghai Scientific and Technical Publishers, China, 2017 (in Chinese).
訚耀保. 高端液压元件理论与实践, 上海科学技术出版社, 2017.
10 Fu J, Gao J, Qin P, et al. Science China Technological Sciences, 2022, 65(1), 77.
11 Fu J, Zhang C, Liu T, et al. Frontiers in Energy, 2020, 14, 81.
12 Liu J. Strategic Study of CAE, 2020, 22(5), 93.
13 Xu A, Tian P, Li H, et al. Tribology International, 2022, 174, 107797.
14 Ma K Q, Liu J. Physics Letters A, 2007, 361(3), 252.
15 Shen Y, Jin D, Fu M, et al. Nature Communications, 2023, 14, 6276.
16 Ali A R I, Salam B. SN Applied Sciences, 2020, 2(10), 1636.
17 Gancarz T. Fluid Phase Equilibria, 2017, 442, 119.
18 Wang C, Gong Y, Cunning B V, et al. Science Advances, 2021, 7(1), eabe3767.
19 Doudrick K, Liu S, Mutunga E M, et al. Langmuir, 2014, 30(23), 6867.
20 Li X, Qi P, Liu Q, et al. Wear, 2021, 484, 203852.
21 Yan S, Xin Z, Xue Y, et al. Wear, 2023, 528, 204987.
22 Yan S, Chen Y, Xue Y, et al. Tribology International, 2023, 183, 108414.
23 Jiang J, Wu Z, Zhu Q, et al. Chemical Industry and Engineering Progress, 2023, 42(12), 6197 (in Chinese).
蒋佳骏, 吴张永, 朱启晨, 等. 化工进展, 2023, 42(12), 6197.
24 Jiang J, Meng X, Mu K, et al. Tribology Letters, 2024, 72, 33.
25 Dai Y. Binary alloy phase atlas, Science Press, China, 2009 (in Chinese).
戴永年. 二元合金相图集, 科学出版社, 2009.
26 Elton E S, Reeve T C, Thornley L E, et al. Journal of Rheology, 2020, 64(1), 119.
27 Chakraborty S, Panigrahi P K. Applied Thermal Engineering, 2020, 174, 115259.
28 Chiu S H, Baharfar M, Chi Y, et al. Advanced Intelligent Systems, 2023, 5(5), 2200364.
29 Xu J, Chen L, Choi H, et al. Journal of Physics:Condensed Matter, 2012, 24(25), 255304.
30 Wang S, Zhang Y, Abidi N, et al. Langmuir, 2009, 25, 11078.
31 Pitthan E, Amarasinghe V P, Xu C, et al. Applied Surface Science, 2017, 402, 192.
33 Vitos L, Ruban A V, Skriver H L, et al. Surface Science, 1998, 411(1-2), 186.
34 Jiao T, Deng Q, Jing G, et al. Journal of Materials Research and Technology, 2023, 24, 3657.
35 Pan S, Zheng T, Yao G, et al. Materials Science & Engineering A, 2022, 831, 141952.
36 Walker D A, Kowalczyk B, de La Cruz M O, et al. Nanoscale, 2011, 3(4), 1316.
37 Tolias P. Fusion Engineering and Design, 2018, 133, 110.
38 Bergstrom L. Advances in Colloid and Interface Science, 1997, 70, 125.
39 Maurer S, Mersmann A, Peukert W. Chemical Engineering Science, 2001, 56(11), 3443.
40 Amano K, Tozawa K, Tomita M, et al. RSC Advances, 2023, 13(44), 30615.
41 Yunusa M, Amador G J, Drotlef D M, et al. Nano Letters, 2018, 18(4), 2498.
42 Okada K, Ozoe H. Industrial & Engineering Chemistry Research, 1992, 31(3), 700.
43 Jiang W, Tang X, Song J, et al. Materials Reports, 2024, 38(4), 22060208(in Chinese).
江巍雪, 汤新宇, 宋金蔚, 等. 材料导报, 2024, 38(4), 22060208.
44 Pan S, Wang T, Jin K, et al. Journal of Materials Science, 2022, 57, 6487.
45 Chen H, Ding Y, Tan C. New Journal of Physics, 2007, 9(10), 367.
[1] 陈观慈, 杨进, 张文斌, 杨照林, 陈永华. 基于NSGA-Ⅱ算法的直流传导电磁泵多目标优化[J]. 材料导报, 2025, 39(9): 24010163-7.
[2] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[3] 王晓媛, 张力冉, 王栋民, 陈洋, 张辰, 翟馨玥. 微波诱导合成聚羧酸减水剂的聚合动力学与热/非热效应研究[J]. 材料导报, 2025, 39(10): 24030177-6.
[4] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[5] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[6] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[7] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[8] 张迎新, 杨康, 李日军, 高江帆, 杨永凤. 新型矿用灭火材料——凝胶干水粉体的制备及灭火实验研究[J]. 材料导报, 2024, 38(24): 23100151-10.
[9] 肖涵松, 玄伟东, 戴睿卿, 刘泳鸿, 李俊杰, 任忠鸣. 高温合金精密铸造用陶瓷型壳及其与合金界面反应的研究进展[J]. 材料导报, 2024, 38(10): 22100275-8.
[10] 王力, 王海斗, 底月兰, 何东昱, 黄艳斐. 电子束辐照改善材料表面润湿性能的研究进展[J]. 材料导报, 2023, 37(23): 22080136-9.
[11] 肖易航, 郑军, 何勇明. 气泡在粗糙表面的润湿行为研究[J]. 材料导报, 2023, 37(23): 22030060-7.
[12] 万小梅, 车雪萍, 朱亚光, 于琦, 江璐璐. 再生混凝土微粉在碱激发胶材体系中的作用效应研究[J]. 材料导报, 2023, 37(19): 22020043-7.
[13] 周敏, 吴泽媚, 欧阳雪, 胡翔, 史才军. 组成及骨料特性对UHPC基体流动性和抗压强度的影响[J]. 材料导报, 2023, 37(18): 22060073-9.
[14] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[15] 尹升华, 曹永, 吴爱祥, 侯永强, 白龙剑. 玻璃纤维增强含硫尾砂胶结充填体的力学及流动性能研究[J]. 材料导报, 2023, 37(13): 21110083-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed