Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24030177-6    https://doi.org/10.11896/cldb.24030177
  高分子与聚合物基复合材料 |
微波诱导合成聚羧酸减水剂的聚合动力学与热/非热效应研究
王晓媛1, 张力冉1,2,*, 王栋民1,*, 陈洋2, 张辰2, 翟馨玥2
1 中国矿业大学(北京)化学与环境工程学院,北京 100083
2 北京服装学院材料设计与工程学院,北京 100029
Polymerization Kinetics and Thermal/Non-thermal Effects in Microwave-induced Synthesis of Polycarboxylate Superplasticizer
WANG Xiaoyuan1, ZHANG Liran1,2,*, WANG Dongmin1,*, CHEN Yang2, ZHANG Chen2, ZHAI Xinyue2
1 School of Chemical & Environmental Engineering, China University of Mining and Technology, Beijing 100083, China
2 College of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 6076KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚羧酸减水剂(PCE)的应用极大地促进了现代混凝土技术的发展。为了实现PCE分子结构的精准调控以及低耗能生产,其合成工艺本身也在不断发展和推进中。本工作从聚合动力学、微波的热效应与非热效应角度出发开展研究,并以传统水浴合成工艺(热诱导法)作对比,研究结果表明:与传统热诱导法相比,微波诱导法可使聚合时长减少88.9%,转化率提高25.6%,使反应物溶液体系在高浓度、相对较低温度下具有较明显的微波热效应,同时还优化了产物PCE的分子结构(有利于较大分子量的分子生成)并使之具有优异的分散性能。因此,微波诱导法是一种清洁、高效的制备方法,可以实现产品精准合成,未来有望应用于连续化工业生产,大幅提升生产效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓媛
张力冉
王栋民
陈洋
张辰
翟馨玥
关键词:  微波诱导  聚合速率  微波热/非热效应  分子结构  分散性能    
Abstract: The application of polycarboxylate superplasticizer (PCE) has greatly promoted the development of modern concrete technology. In order to achieve precise regulation of the molecular structure of PCE and low energy consumption production, the synthesis process itself is also constantly developing and advancing. In this paper, the polymerization kinetics, microwave thermal effect and non-thermal effect were studied and compared with the conventional water bath synthesis process (thermal induction method). The results showed that the reaction time of microwave-induced polymerization was reduced by 88.9%, and the conversion rate was increased by 25.6%. At high concentration and low temperature, the microwave thermal effect of the reactant solution system was obvious, and the molecular structure was optimized (which was beneficial to the formation of molecules with large molecular weight), which had excellent dispersion performance. Therefore, the microwave induction method is a clean and efficient preparation method, which can realize accurate synthesis of products, facilitate continuous industrial applicative production in the future, and greatly improve production efficiency.
Key words:  microwave induction    polymerization rate    microwave thermal/non-thermal effect    molecular structure    dispersion property
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB324  
基金资助: 国家自然科学基金(52202015);北京市自然科学基金(2232050)
通讯作者:  *张力冉,北京服装学院材料设计与工程学院副教授、硕士研究生导师,2015年中国矿业大学(北京)应用化学专业博士毕业。目前主要从事混凝土外加剂绿色制备技术、生物基外加剂在碱激发材料中的应用、柔性传感器设计及在混凝土健康检测中的应用等方面的研究工作。20180022@bift.edu.cn;王栋民,中国矿业大学(北京)化学与环境工程学院教授、博士研究生导师,2002年中国建筑材料科学研究总院无机非金属专业博士毕业。目前主要从事现代高性能水泥基材料及其化学外加剂的精细化学合成与应用研究,以及工业/矿业固体废物的处理与生态环境建筑材料制备和应用研究。wangdongmin@cumtb.edu.cn   
作者简介:  王晓媛,2022年6月于长安大学获得工学学士学位。现为中国矿业大学(北京)化学与环境工程学院硕士研究生,在王栋民教授、张力冉副教授的指导下进行研究。目前主要研究领域为碱激发材料外加剂。
引用本文:    
王晓媛, 张力冉, 王栋民, 陈洋, 张辰, 翟馨玥. 微波诱导合成聚羧酸减水剂的聚合动力学与热/非热效应研究[J]. 材料导报, 2025, 39(10): 24030177-6.
WANG Xiaoyuan, ZHANG Liran, WANG Dongmin, CHEN Yang, ZHANG Chen, ZHAI Xinyue. Polymerization Kinetics and Thermal/Non-thermal Effects in Microwave-induced Synthesis of Polycarboxylate Superplasticizer. Materials Reports, 2025, 39(10): 24030177-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030177  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24030177
1 Jalal M, Teimortashlu E, Grasley Z. Composites Part B:Engineering, 2019, 163, 497.
2 Zhang L R, Miao X, Kong X M, et al. Cement and Concrete Composites, 2019, 104, 103369.
3 Zhang Y R, Kong X M. Construction and Building Materials, 2014, 53, 392.
4 Sathyan D, Anand K B. Construction and Building Materials, 2019, 204, 864.
5 Meng Y, Liao B, Wang K, et al. Journal of Macromolecular Science Part A, 2019, 56(10), 933.
6 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2000, 30(9), 1367.
7 Peschard A, Govin A, Grosseau P, et al. Cement and Concrete Research, 2004, 34(11), 2153.
8 Wang L, Wang J, Wang H, et al. Cement and Concrete Composites, 2024, 146, 105405.
9 Ezzat M, Lesage K, Sedlaík T, et al. European Polymer Journal, 2023, 112173.
10 Zhang L, Du W, Wang D, et al. Polymers, 2024, 16(3), 322.
11 Zhang L, Du W, Wang D, et al. Composites Part B:Engineering, 2021, 207, 108560.
12 Du W, Zhang L, Zhang C, et al. Frontiers in Materials, 2022, 8, 789081.
13 Wang H, Zhang L, Wang D, et al. ACS Applied Nano Materials, 2022, 5(3), 4038.
14 Lei L, Zhang Y. Composites Part B:Engineering, 2021, 223, 109077.
15 Msinjili N S, Schmidt W, Mota B, et al. Construction & Building Materials, 2017, 150, 511.
16 Kappe C O. Angewandte Chemie International Edition, 2004, 43(46), 6250.
17 Teimouria Z, Salema A, Salem S. Journal of Environmental Chemical Engineering, 2019, 7(1), 103161.
18 Behera S S, Panda S K, Mandal D, et al. Hydrometallurgy, 2019, 185, 61.
19 Kaiser N F K, Bremberg U, Larhed M, et al. Angewandte Chemie International Edition, 2000, 39(20), 3595.
20 Hasar U C, Westgate C R, Ertugrul M. IET Microwave, Antennas and Propagation, 2010, 4(1), 141.
21 Luo M, Huang K M, Pu T L. In:Proceedings of International Conference on Microwave and Millimeter Wave Technology. Chengdu, China, 2010, pp.1083.
22 Jacob J, Chia L, Boey F. Journal of Materials Science, 1995, 30(21), 5321.
23 Marchon D, Mantellato S, Eberhardt A B, et al. Science and technology of concrete admixtures, Woodhead Publishing, UK, 2016, pp.220.
24 Kong X M, Zhang Y R, Hou S S. Rheologica Acta, 2013, 52, 707.
[1] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[2] 姜波, 焦欢, 郭新宇, 金永灿. 木质素熔融沉积式3D打印的分子结构-流变学响应关系研究进展[J]. 材料导报, 2024, 38(11): 22100182-8.
[3] 吉贝贝, 吴楠, 刘姣, 廖维, 吕家杰, 尹昌平, 邢素丽. 高性能邻苯二甲腈树脂分子结构调控研究进展[J]. 材料导报, 2023, 37(S1): 23030102-10.
[4] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[5] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[6] 文轩, 胡志豪, 汪苏平, 张云, 汪源. 交联型聚羧酸减水剂的制备及性能研究[J]. 材料导报, 2021, 35(z2): 172-175.
[7] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[8] 周文娟, 段佳豪, 谢谦, 王华萍. 抗泥型聚羧酸减水剂研究与应用现状[J]. 材料导报, 2021, 35(Z1): 650-653.
[9] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[10] 杨淑敏, 刘杏娥, 尚莉莉, 马建锋, 田根林, 江泽慧. 竹材木质素特性及表征方法研究进展[J]. 材料导报, 2020, 34(7): 7177-7182.
[11] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[12] 汪源, 汪苏平, 张亚利, 纪宪坤. 混凝土增粘剂的制备及应用性能研究[J]. 材料导报, 2019, 33(Z2): 283-287.
[13] 刘晓, 赖光洪, 许谦, 管佳男, 王子明, 崔素萍, 兰明章. 基于抑制粘土负作用效果的聚羧酸减水剂的设计合成及机理[J]. 材料导报, 2018, 32(22): 3880-3884.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed