Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24080159-5    https://doi.org/10.11896/cldb.24080159
  无机非金属及其复合材料 |
不同碱性催化剂对疏水SiO2气凝胶性能的影响
李祥文, 李昆锋*, 武晨浩, 费志方, 张震, 孙文彩, 杨自春
海军工程大学动力工程学院,武汉 430033
Effects of Different Basic Catalysts on the Properties of Hydrophobic SiO2 Aerogels
LI Xiangwen, LI Kunfeng*, WU Chenhao, FEI Zhifang, ZHANG Zhen, SUN Wencai, YANG Zichun
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
下载:  全 文 ( PDF ) ( 15873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以甲基三乙氧基硅烷(MTES)为硅源,水为溶剂,十六烷基三甲基溴化铵(CTAB)为表面活性剂,乙酸和四种不同的碱(尿素、氢氧化钠、氨水和四甲基氢氧化铵)为酸碱催化剂,通过溶胶-凝胶法和CO2超临界干燥制备了疏水SiO2气凝胶,对比研究了四种碱性催化剂对气凝胶结构和性能的影响。结果表明:四种碱性催化剂均可以制备出高透明度、高比表面积、柔性的疏水SiO2气凝胶,但不同碱性催化剂对制备样品的结构和性能有不同的影响。使用尿素制备的样品具有最高的比表面积(630 m2/g)、透光率(81.5%)和最大的疏水角(162.3°),最低的密度,但力学性能较差;使用氢氧化钠制备的样品具备最高的强度(0.171 MPa)和回弹率(29.3%);使用四甲基氢氧化铵制备的样品导热系数(19.9 mW·m-1·K-1)最低,其凝胶骨架由直径10 nm左右的次级粒子团聚而成,与其他三种碱性催化剂制备的凝胶骨架的珍珠链结构明显不同。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李祥文
李昆锋
武晨浩
费志方
张震
孙文彩
杨自春
关键词:  二氧化硅气凝胶  碱性催化剂  表面活性剂  微观结构    
Abstract: Using methyltriethoxysilane (MTES) as the silicon source, water as the solvent, cetyltrimethylammonium bromide (CTAB) as the surfactant, acetic acid and four different alkalis (urea, sodium hydroxide, ammonia water and tetramethylammonium hydroxide) as acid and base catalysts, sol-gel method and CO2 supercritical drying were used to prepare hydrophobic SiO2 aerogel. The effects of four different basic catalysts on the structure and properties of aerogels were comparatively studied. The results show that four different basic catalysts can prepare hydrophobic SiO2 aerogels with high transparency, high specific surface area, and flexibility, but different basic catalysts have different effects on the structure and properties of the prepared samples. The sample prepared with urea has the highest specific surface area (630 m2/g), transmittance (81.5%) and hydrophobic angle (162.3°), the lowest density, but poor mechanical properties;the maximum stress (0.171 MPa) and rebound rate (29.3%) of the sample prepared with sodium hydroxide are the highest;the sample prepared with tetramethylammonium hydroxide has the lowest thermal conductivity (19.9 mW·m-1·K-1), and its gel skeleton is formed by agglomeration of secondary particles with a diameter of about 10 nm, and this is significantly different from the pearl chain structure of the gel skeleton prepared by the other three base catalysts.
Key words:  silica aerogel    basic catalyst    surfactant    microstructure
发布日期:  2025-08-28
ZTFLH:  TB321  
基金资助: 国家自然科学基金(51802347)
通讯作者:  *李昆锋,海军工程大学动力工程学院副教授、博士研究生导师,教研室副主任,主要从事船舶新型功能材料研究。waws1019@163.com   
作者简介:  李祥文,海军工程大学动力工程学院硕士研究生。目前主要研究领域为二氧化硅气凝胶基隔声绝热功能一体化复合材料。
引用本文:    
李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
LI Xiangwen, LI Kunfeng, WU Chenhao, FEI Zhifang, ZHANG Zhen, SUN Wencai, YANG Zichun. Effects of Different Basic Catalysts on the Properties of Hydrophobic SiO2 Aerogels. Materials Reports, 2025, 39(17): 24080159-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080159  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24080159
1 Guo J Y, Zhao Y M, Zhang L J, et al. Materials Reports, 2019, 33(Z1), 202(in Chinese).
郭建业, 赵英民, 张丽娟, 等. 材料导报, 2019, 33(Z1), 202.
2 Ng S, Jelle B P, Sandberg L I C, et al. Construction and Building Materials, 2015, 77, 307.
3 Pan Y, He S, Gong L, et al. Materials and Design, 2017, 113, 246.
4 Li X, Yang Z, Li K, et al. Journal of Sol-Gel Science and Technology, 2019, 92(3), 652.
5 Talebi Z, Soltani P, Habibi N, et al. Construction and Building Materials, 2019, 220, 76.
6 Yang X, Wu Z, Chen H, et al. Frontiers in Materials, 2020, 7, 152.
7 Maleki H, Durães L, García-González C A, et al. Advances in Colloid and Interface Science, 2016, 236, 1.
8 Jiang X, Kong Y, Zhao Z, et al. RSC Advances, 2020, 10(43), 25911.
9 Chen Y X, Hendrix Y, Schollbach K, et al. Construction and Building Materials, 2020, 248, 118709.
10 Maleki H, Hüsing N. Applied Catalysis B:Environmental, 2018, 221, 530.
11 Amonette J E, Matyáš J. Microporous and Mesoporous Materials, 2017, 250, 100.
12 Ulker Z, Erkey C. Journal of Controlled Release, 2014, 177, 51.
13 Marszewski M, King S C, Galy T, et al. Journal of Colloid and Interface Science, 2022, 606, 884.
14 Marszewski M, King S C, Yan Y, et al. ACS Applied Nano Materials, 2019, 2(7), 4547.
15 Zhao L, Bhatia B, Yang S, et al. ACS Nano, 2019, 13(7), 7508.
16 Huang Y, He S, Feng M, et al. Journal of Non-Crystalline Solids, 2019, 521, 119507.
17 Haereid S, Einarsrud M A, Scherer G W. Journal of Sol-Gel Science and Technology, 1994, 3(3), 199.
18 Tamon H, Sone T, Okazaki M. Journal of Colloid and Interface Science, 1997, 188(1), 162.
19 Rao A V, Bhagat S D, Hirashima H, et al. Journal of Colloid and Interface Science, 2006, 300(1), 279.
20 Nadargi D Y, Rao A V. Journal of Alloys and Compounds, 2009, 467(1-2), 397.
21 Shao Z, He X, Cheng X, et al. Materials Letters, 2017, 204, 93.
22 Kanamori K, Aizawa M, Nakanishi K, et al. Advanced Materials, 2007, 19(12), 1589.
23 Hayase G, Kugimiya K, Ogawa M, et al. Journal of Materials Chemistry A, 2014, 2(18), 6525.
24 Wu X, Zhong K, Ding J, et al. Journal of Non-Crystalline Solids, 2020, 530, 119826.
25 Li X H, Yang Z C, Li K F, et al. Chemical Industry and Engineering Progress, 2020, 39(3), 1115(in Chinese).
李肖华, 杨自春, 李昆锋, 等. 化工进展, 2020, 39(3), 1115.
26 Cai L, Pu Q, Qu K, et al. CIESC Journal, 2016, 67(2), 648(in Chinese).
蔡龙, 浦群, 曲康, 等. 化工学报, 2016, 67(2), 648.
27 Su G H. Multi-scale heat transfer mechanism of composite nanoporous thermal insulation materials. Master's Thesis, Naval University of Engineering, China, 2015(in Chinese).
苏高辉. 复合纳米孔绝热材料多尺度传热机理. 硕士学位论文, 海军工程大学, 2015.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[3] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[4] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[5] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 荣辉, 王亚楠, 刘志华, 王海良, 黄阔薪. 海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态[J]. 材料导报, 2025, 39(17): 24060213-7.
[8] 付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
[9] 刘煌海, 季韬, 刘信所, 胡志龙, 郑巧芳, 郑小燕. 纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究[J]. 材料导报, 2025, 39(16): 24060009-8.
[10] 历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
[11] 尹雪亮, 王慧芳, 杨茜, 徐磊, 马北越. ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响[J]. 材料导报, 2025, 39(15): 24110086-5.
[12] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[13] 张永成, 曹锋, 郑明杰, 李双营, 欧阳浩. 青稞秸秆灰改性氯氧镁水泥的抗盐卤侵蚀性能与细微观结构[J]. 材料导报, 2025, 39(13): 24050241-8.
[14] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[15] 聂光临, 刘磊仁, 刘一军, 左飞, 汪庆刚, 吴洋, 黄玲艳, 包亦望. 利用t-ZrO2分散特性的优化制备高强韧高导热ZTA陶瓷[J]. 材料导报, 2025, 39(11): 24020100-9.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed