Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z2): 521-524    
  高分子与聚合物基复合材料 |
纤维素纳米晶基导电复合材料的应用进展
金克霞1, 江泽慧1, 马建锋1, 傅峰2, 杨淑敏1, 刘杏娥1
1 国际竹藤中心,竹藤科学与技术重点实验室,北京100102
2 中国林业科学研究院木材工业研究所,北京 100091
Application Progress of Cellulose Nanocrystals-based Electroconductive Composites
JIN Kexia1, JIANG Zehui1, MA Jianfeng1, FU Feng2, YANG Shumin1, LIU Xing'e1
1 Key Laboratory of Bamboo and Rattan Science and Technology, International Center for Bamboo and Rattan, Beijing 100102, China
2 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China
下载:  全 文 ( PDF ) ( 2737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素纳米晶(CNC)是一种理想的纳米增强材料,同时具有可降解、可再生、较大的长径比、高比表面积等特点,在复合材料中可作为基质、模板、分散剂、增强体等,近年来与导电活性材料(导电聚合物、碳材料、金属氧化物等)形成的导电复合材料在电子及能量存储行业越来越引起人们的兴趣。本文首先介绍了酸水解及酶水解方法制备CNC的特点,在此基础上,总结了利用CNC特性与各类导电活性材料复合形成的导电复合材料在导电薄膜、超级电容器、传感器领域的研究进展,最后针对CNC应用于电子领域存在的问题提出了建设。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金克霞
江泽慧
马建锋
傅峰
杨淑敏
刘杏娥
关键词:  纤维素纳米晶  导电薄膜  超级电容器  传感器    
Abstract: Cellulose nanocrystals (CNC) with characteristics of renewable,biodegradable, large aspect ratio and high specific surface area, has considered as an ideal nano-reinforcement material. With the development of conductive composites in the field of electronics and energy in recent years, CNC has been raised lots of interests in conductive composites with different conducting active material (conductive polymer and carbon material, metal oxide, etc.) to serve as matrix, templates, dispersant and reinforcing agents. In this paper, the characteristics of the preparation of CNC by acid hydrolysis and enzymatic hydrolysis are introduced. On this basis, the research progress of the CNC conductive composites made by the combination of CNC and various conductive active materials in the fields of conductive films, supercapacitors and sensors are summarized. Finally, the suggest of CNC in the field of electronics is proposed.
Key words:  cellulose nanocrystals    conductive film    supercapacitor    sensor
               出版日期:  2020-11-25      发布日期:  2021-01-08
ZTFLH:  TQ352  
基金资助: 十三五重点研发计划(2017YED0600804);国家自然科学基金(31500497;31670565)
通讯作者:  liuxinge@icbr.ac.cn   
作者简介:  金克霞,2015年6月毕业于中南林业科技大学,获得工学学士学位。现为国际竹藤中心博士研究生。目前主要研究领域为竹材细胞壁及纳米晶复合薄膜制备及其性能研究。刘杏娥,博士,研究员,博士研究生导师。主要从事竹藤材结构与性能、竹藤等生物质基炭材料方面的研究工作。主持和参加了国家级、省部级科研课题多项,在Carbohydrates Polymer、Electrochimica Acta、Wood and Fiber Science和Holzforschung等多种刊物发表论文40余篇,参与编写专著3部,获“梁希”林业科学技术奖一等奖、二等奖及茅以升木材科学技术奖各1项,入选“国家林业和草原局百千万人才工程”第五批人选和国家林业局“全国生态建设突出贡献先进个人”。
引用本文:    
金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
JIN Kexia, JIANG Zehui, MA Jianfeng, FU Feng, YANG Shumin, LIU Xing'e. Application Progress of Cellulose Nanocrystals-based Electroconductive Composites. Materials Reports, 2020, 34(Z2): 521-524.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ2/521
1 Hoeng F, Denneulin A, Bras J. Nanoscale, 2016, 8(27), 13131
2 Grishkewich N, Mohammed N, Tang J, et al. Current Opinion in Colloid and Interface Science, 2017, 29, 32.
3 Chen W, Yu H, Lee S Y, et al.Chemical Society Reviews, 2018, 47(8), 2837.
4 Klemm D, Kramer F, Moritz S, et al. Angewandte Chemie, 2011, 50(24), 5438.
5 Vasconcelos N F, Feitosa J P A, Gama F M P D, et al. Carbohydrate Polymers, 2017, 155, 425.
6 Liu Y, Wang H, Yu G, et al. Carbohydrate Polymers, 2014, 110(1), 415.
7 Chen L, Zhu J, Baez C, et al. RSC Green Chemistry, 2016, 18(13), 3835.
8 Sèbe G, Hampichavant F, Ibarboure E, et al. Biomacromolecules, 2012, 13(2), 570.
9 Yue Y, Zhou C, French A D, et al. Cellulose, 2012, 19(4), 1173.
10 Khili F, Borges J, Almeida P L, et al. Waste & Biomass Valorization, 2018, 22, 1.
11 金克霞, 江泽慧, 刘杏娥, 等. 材料导报, 2019, 33(9), 2997.
12 Chen L, Wang Q, Hirth K, et al. Cellulose, 2015, 22(3), 1753.
13 卓治非, 房桂干, 沈葵忠, 等. 江苏造纸, 2015(1), 14.
14 Zhang Y, Xue G X, Zhang X M, et al. Advanced Materials Research, 2012, 441, 754.
15 Tang Y, Shen X, Zhang J, et al. Carbohydrate Polymers, 2015, 125, 360.
16 Milena M T, Masson M M, Silva Natália C, et al. Carbohydrate Polymers, 2018, 198, 61.
17 Xiong R, Hu K, Grant A M, et al. Advanced Materials, 2016, 28(7), 1501.
18 万思杰, 虎伟, 江雷, 等. 科学通报, 2017, 62(27), 61.
19 Berg O V D, Schroeter M, Capadona J R, et al. Journal of Materials Chemistry, 2007, 17(26), 2746.
20 Hamad W Y, Atifi S. US patent, US9384867, 2016.
21 Wang S, Wei C, Gong Y, et al. RSC Advances, 2016, 6(12), 10168.
22 Valentini L, Bon S B, Fortunati E, et al. Journal of Materials Science, 2014, 49(3), 1009.
23 Valentini L, Cardinali M, Fortunati E, et al. Applied Physics Letters, 2014, 105(15), 153111.
24 Chen Q, Liu P, Sheng C, et al. RSC Advances, 2014, 4(74), 39301.
25 Nan F, Chen Q, Liu P, et al. RSC Advances, 2016, 6(96), 93673.
26 Meng Q, Manas-Zloczower I. Composites Science and Technology, 2015, 120, 1.
27 Wang F, Drzal L T, Qin Y, et al. Composites Part B Engineering, 2015, 79, 521.
28 Lizundia E, Nguyen T D, Vilas J L, et al. Journal of Materials Chemistry A, 2017, 5(36),19184.
29 Liew S, Walsh D, Thielemans W. RSC Advances, 2013, 3(24), 9158.
30 Huang Z, Wang A, Macdiarmid A G, et al. Langmuir, 1997, 13(13), 6480.
31 Wu X, Tang J, Duan Y, et al. Journal of Materials Chemistry A, 2014, 2(45), 19268.
32 Jung S M, Mafra D L, Lin C T, et al. Nanoscale, 2015, 7(10), 4386.
33 Wu X, Shi Z, Tjandra R, et al. Journal of Materials Chemistry A, 2015, 3(47), 23768.
34 Yang X, Shi K, Zhitomirsky I, et al. Advanced Materials, 2015, 27(40), 6104.
35 Shi K, Yang X, Cranston E D, et al.Advanced Functional Materials, 2016, 26(35), 6437.
36 Chen G, Chen T, Hou K, et al. Carbon, 2018, 127, 218.
37 Tang J, Song Y, Berry R, et al. RSC Advances, 2014, 4(104), 60249.
38 Sadasivuni K K, Ponnamma D, Ko H U, et al.Sensors and Actuators B Chemical, 2016, 233, 633.
39 Xu G, Liang S, Fan J, et al.Microchimica Acta, 2016, 183(6), 2031.
40 Cao J, Zhang X, Wu X, et al. Carbohydrate Polymers, 2016, 140, 88.
41 Sadasivuni K K, Kafy A, Zhai L, et al.Small, 2015, 11(8), 994.
42 Kafy A, Akther A, Shishir M I R, et al.Sensors and Actuators A Physical, 2016, 247, 221.
43 Yan C, Wang J, Kang W, et al.Advanced Materials, 2014, 26(13), 2022.
44 Wang S, Zhang X, Wu X, et al. Soft Matter, 2016, 12(3), 845.
45 Chen L, Lai C, Marchewka R, et al.Nanoscale, 2016, 8(27), 13288.
[1] 马香钰, 夏广波, 邱琳琳, 董丽卡, 丁明乐, 杜平凡. 纤维及织物基柔性可穿戴器件研究进展[J]. 材料导报, 2020, 34(Z1): 490-497.
[2] 张晓琳, 丰晓婷, 詹世平, 卢春兰, 李鸣明, 侯维敏. 基于双硫键的荧光传感器在生物检测及靶向治疗药物输送系统中的应用[J]. 材料导报, 2020, 34(5): 5142-5147.
[3] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[4] 程晓红, 代思思, 和平, 屈少华, 汪竞阳. 可依次检测汞、硫离子的双功能比色传感器的设计与研究[J]. 材料导报, 2020, 34(24): 24010-24013.
[5] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[6] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[7] 常胜男, 李津, 刘皓. 基于生物衍生材料的柔性应变/压力传感器的研究进展[J]. 材料导报, 2020, 34(19): 19173-19182.
[8] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[9] 张永芳, 王霞, 邢志国, 黄艳斐, 郭伟玲. 面向机械装备健康监测的振动传感器研究现状[J]. 材料导报, 2020, 34(13): 13121-13130.
[10] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[11] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[12] 李法利,李晟斌,曹晋玮,刘宜伟,尚杰,李润伟. 弹性敏感材料与传感器件[J]. 材料导报, 2020, 34(1): 1059-1068.
[13] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[14] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[15] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[1] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[4] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[5] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[6] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[7] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[8] YAN Zhilong, LI Yongsheng, HU Kai, ZHOU Xiaorong. Progress of Study on Phase Decomposition of Duplex Stainless Steel[J]. Materials Reports, 2017, 31(15): 75 -80 .
[9] SHI Yu, ZHOU Xianglong, ZHU Ming, GU Yufen, FAN Ding. Effect of Filler Wires on Brazing Interface Microstructure and Mechanical Properties of Al/Cu Dissimilar Metals Welding-Brazing Joint[J]. Materials Reports, 2017, 31(10): 61 .
[10] DONG Fei,YI Youping,HUANG Shiquan,ZHANG Yuxun,. TTT Curves and Quench Sensitivity of 2A14 Aluminum Alloy[J]. Materials Reports, 2017, 31(10): 77 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed