Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 116-121    
  无机非金属及其复合材料 |
纳米复相永磁材料的研究进展
王坤宇, 冯运莉, 柳昆
华北理工大学冶金与能源学院,唐山 063210
Advances in Nanocomposite Permanent Magnetic Materials
WANG Kunyu, FENG Yunli, LIU Kun
College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210
下载:  全 文 ( PDF ) ( 2696KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米复相永磁材料是目前最新一代的永磁材料,通过组合具有高磁晶各向异性的硬磁相和具有高饱和磁化强度的软磁相,其理论最大磁能积((BH)max)远远高于NdFeB永磁材料。但是其制备工艺复杂,实验数据与理论计算值相差很多。近几年许多研究者开展了关于纳米复相永磁材料的研究,使该材料的生产工艺逐渐成熟,并且组织性能有了很大提升。本文简要介绍了纳米复相永磁材料的发展历史,重点介绍了合金元素添加、不同热处理方法对纳米复相永磁材料组织和性能影响的最新研究成果,以及以熔体快淬法为代表的不同制备工艺,并展望了纳米复合永磁材料未来的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王坤宇
冯运莉
柳昆
关键词:  纳米复相  永磁材料  耦合  制备工艺  溶体快淬法    
Abstract: Nanocomposite permanent magnet material is the latest generation of permanent magnet material, which is formed by combining a hard magnetic phase with high magnetocrystalline anisotropy and a soft magnetic phase with high saturation magnetization in the nanometer scale. For magnetic materials, the maximum magnetic energy product ((BH)max) is significantly higher than that of NdFeB permanent magnet mate-rials. However, since the nanocomposite permanent magnet material needs to recombine the two phases at the nanometer scale, the preparation process is complicated, and the experimental data is far from the theoretical calculation value. In recent years, many researchers have carried out research on nanocomposite permanent magnet materials, which has greatly improved the production process and magnetic properties of the material. This paper briefly introduces the development history of nanocomposite permanent magnet materials, and focuses on the latest research results on the effects of alloying elements and different heat treatment methods on the magnetic properties of the material, as well as different preparation processes represented by melt quenching. And the future development direction of nanocomposite permanent magnet materials is explored at the same time.
Key words:  nanocomposite    permanent magnet material    coupling    preparation process    melt quenching
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TG146  
基金资助: 国家自然科学基金(51674123);河北省自然科学基金重点项目(E2017209237);河北省高等学校创新团队领军人才培育计划(LJRC007)
作者简介:  王坤宇,华北理工大学研究生,2013年9月至2017年6月在华北理工大学获得材料成型及控制工程学士学位。目前主要研究方向为金属功能材料。冯运莉,华北理工大学教授,博士研究生导师,学科带头人,国家级特色专业-金属材料工程专业负责人。2001年在华北理工大学金属材料及加工工程系工作至今。在国内外学术期刊上发表论文130余篇,出版教材2部,获得国家发明专利授权7项。其团队主要研究方向包括:磁性材料、超细晶/纳米晶金属材料、材料加工新技术与组织性能控制、材料表面处理及高性能钢铁材料的开发。近年承担国家自然科学基金面上项目6项,河北省杰出青年基金、支撑计划等省部级项目7项,市厅级及横向科研项目30余项。获河北省科技进步二等奖2项,三等奖3项,国家冶金科学技术三等奖1项。tsfengyl@163.com
引用本文:    
王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
WANG Kunyu, FENG Yunli, LIU Kun. Advances in Nanocomposite Permanent Magnetic Materials. Materials Reports, 2019, 33(z1): 116-121.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/116
1 胡伯平. 磁性材料及器件,2014,45(2),66.
2 Coehoorn R,Demooij D B,Dewaard C, et al. Journal of Magnetism and Magnetic Materials,1989,80,101.
3 Sagawa M,Fujimura S,Togawa N, et al. Journal of Applied Physics,1984,55(6),2083.
4 Croat J J,Herbst J F,Lee R W, et al.Journal of Applied Physics,1984,55(6),2078.
5 Skomski R, Coey J M. Physical Review B,1993,48(21),15812.
6 李玉平,胡连喜,郭斌.稀有金属材料与工程,2007(36),138.
7 Fischer R,Schrefl T,Kronmuller H, et al.Physical Review B,1996,54,7284.
8 Riadh Bez, Karim Zehani, Maria Batuk, et al. Journal of Alloys and Compounds,2017,810,695.
9 Song Liwei,Yu Nengjun, Zhu Minggang,et al. Journal of Rare Earths,2018,36(1),95.
10 Liang Wang, Jiang Wang, Maohua Rong, et al. Journal of Rare Earths,2018,36(11),1179.
11 Ningtao Quan, Yang Luo, Wenlong Yan, et al. Journal of Magnetism and Magnetic Materials,2017,437,12.
12 Suresh K, Gopalan R, Sridhara Rao D V, et al. Intermetallics,2010,18(11),2244.
13 Lama Khalil, Cynthia Eid, Mikhael Bechelany, et al. Materials Letters,2014,140,27.
14 Kun Pei, Min Lin, Aru Yan, et al. Journal of Magnetism and Magnetic Materials,2016,406,239.
15 Akihide Hosokawa, Kenta Takagi, Takahiro Kuriiwa. Journal of Magne-tism and Magnetic Materials,2017,5(23),223.
16 Shan Tao, Zubair Ahmad, Zhang Pengyue. Journal of Alloys and Compounds,2018,735,81.
17 Hou Fuchen, Li Xiaohong, Zhang Guosheng, et al. Journal of Alloys and Compounds,2018,764,718.
18 Li X H, Lou L,Song W P, et al. Advanced Materials,2017,(29),160.
19 Li X H, Lou L,Song W P, et al. Nano Letters,2017,17,2985.
20 Yunyun Feng, Li Lou, Ming Li, et al. Journal of Alloys and Compounds,2018,744,104.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[3] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[4] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[5] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[6] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[7] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[8] 徐初东,陆胜东,熊万杰. 飞秒激光超快热诱导全光磁化反转研究进展[J]. 材料导报, 2019, 33(15): 2561-2564.
[9] 余淑荣, 程能弟, 黄健康, 李楠, 樊丁. 旁路耦合微束等离子弧焊增材制造的热过程[J]. 材料导报, 2019, 33(1): 162-166.
[10] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[11] 林星, 林冠烽, 黄彪1. 物理化学活化法制备红麻杆基活性炭及其表征[J]. 材料导报, 2019, 33(1): 198-202.
[12] 程 波,向真才,郭 恒,熊云威. 煤岩材料对瓦斯吸附性能的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1513-1518.
[13] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[14] 黄嘉平, 崔海坡, 宋成利, 周宇. 不同材料对双极高频电刀温度场的影响[J]. 材料导报, 2018, 32(24): 4319-4323.
[15] 高南沙,侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 《材料导报》期刊社, 2018, 32(2): 322-326.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed