Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 10-14    https://doi.org/10.11896/j.issn.1005-023X.2017.022.003
  材料研究 |
硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*
金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪
南昌大学光伏研究院,南昌 330031
Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes
JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang
Institute of Photovoltaics, Nanchang University, Nanchang 330031
下载:  全 文 ( PDF ) ( 615KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将电阻率为1 Ω·cm、0.1 Ω·cm、0.01 Ω·cm、0.001 Ω·cm的n型掺杂硅片以及电阻率为1 Ω·cm、0.001 Ω·cm的p型掺杂硅片球磨制成6种硅粉,并分别将其与石墨按照5∶95的质量比进行混合,用作锂离子电池负极材料并制成扣式电池,通过电化学阻抗谱和倍率性能测试来研究硅材料体电阻率和掺杂类型对锂离子电池电化学性能的影响规律。结果表明,硅材料体电阻率越低,其储锂容量越高,倍率性能越好。电阻率相同时,n型掺杂硅始终比p型掺杂硅具有更大的储锂容量和更好的倍率性能。但是,当p型掺杂硅的电阻率远低于n型掺杂硅时,p型掺杂硅电化学性能更佳。另外,0.001 Ω·cm的n型掺杂硅样品具有最佳的充放电比容量和倍率性能,其首次充放电比容量分别为457.7 mAh·g-1和543.4 mAh·g-1。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金晨鑫
徐国军
刘烈凯
岳之浩
李晓敏
汤昊
周浪
关键词:  硅/石墨负极  体电阻率  n型掺杂  p型掺杂  锂离子电池  电化学性能    
Abstract: n-Type silicon wafers with bulk electrical resistivity of 1 Ω·cm, 0.1 Ω·cm, 0.01 Ω·cm and 0.001 Ω·cm and p-type silicon wafers with bulk electrical resistivity of 1 Ω·cm and 0.001 Ω·cm were separately ball-milled to form six different types of silicon powders, which were subsequently mixed with graphite powders at a weight ratio of 5∶95 respectively in order for serving as anode materials in lithium-ion batteries (LIBs). The effects of bulk electrical resistivity and doping types of silicon materials on the anodes’ electrochemical performances in LIBs were investigated through the electrochemical impedance spectra and rate tests. The results showed that silicon with lower bulk electrical resistivity exhibits higher capacity and better rate performance. Besides, n-type doped silicon has higher capacity and better rate performance than those of p-type doped silicon with the same bulk electrical resistivity. In addition, if the bulk electrical resistivity of p-type doped silicon is much lower than that of n-type doped silicon, p-type doped silicon can perform better in electrochemical properties. The sample prepared from 0.001 Ω·cm n-type-Si wafer achieves the highest discharge and charge capacities (543.4 mAh·g-1 and 457.7 mAh·g-1, respectively) during the first cycle.
Key words:  silicon/graphite anode    bulk electrical resistivity    n-type doping    p-type doping    lithium-ion battery,electrochemical performance
发布日期:  2018-05-08
ZTFLH:  TM911  
基金资助: *中国博士后基金(2016M592115);江西省博士后基金(2015KY12);江西教育厅项目(150184);国家自然科学基金(61464007);江西省自然科学基金(2015BAB207055);南昌大学研究生创新专项资金项目(cx2016014)
通讯作者:  岳之浩,男,1987年生,博士,讲师,主要研究方向为硅材料及器件 E-mail:yuezhihao@ncu.edu.cn   
作者简介:  金晨鑫:男,1993年生,硕士研究生,主要研究方向为硅材料及器件 E-mail:jinchenxin777@163.com
引用本文:    
金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes. Materials Reports, 2017, 31(22): 10-14.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.003  或          https://www.mater-rep.com/CN/Y2017/V31/I22/10
1 Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008,451(7179):652.
2 Li J, Daniel C, Wood D. Materials processing for lithium-ion batte-ries[J]. J Power Sources, 2011,196(5):2452.
3 Fu W L.Progress in research on materials for lithium-ion batteries[J]. Chin J Power Sources, 2009,33(9):822(in Chinese).
付文莉. 锂离子电池电极材料的研究进展[J]. 电源技术, 2009,33(9):822.
4 Liang C, Xu H H, Liang S,et al. Progress in lithium storage materials as anode for lithium-ion battery[J]. Mater Rev:Rev, 2015,29(6):9(in Chinese).
梁初, 许浩辉, 梁升,等. 锂离子电池负极储锂材料的研究进展[J]. 材料导报:综述篇, 2015,29(6):9.
5 Li R R,Wang Q T.Research progress of Si-based composite anode materials for Li-ion batteries.[J]. Mater Rev: Rev, 2014,28(5):20(in Chinese).
李瑞荣, 王庆涛. 锂离子电池硅基负极材料的研究进展[J]. 材料导报:综述篇, 2014,28(5):20.
6 Li C M, Zhang R Y, Li W S. Research progress in applications of silicon materials for lithium-ion batteries[J]. Mater Rev, 2006,20(9):34(in Chinese).
李昌明, 张仁元, 李伟善. 硅材料在锂离子电池中的应用研究进展[J]. 材料导报, 2006, 20(9):34.
7 Leblanc D, Hovington P, Kim C, et al. Silicon as anode for high-energy lithium ion batteries: From molten ingot to nanoparticles[J]. J Power Sources, 2015,299:529.
8 Gauthier M, Reyter D, Mazouzi D, et al. From Si wafers to cheap and efficient Si electrodes for Li-ion batteries[J]. J Power Sources, 2014,256(12):32.
9 Sato K, Noguchi M, Demachi A, et al. A mechanism of lithium storage in disordered carbons[J]. Science,1994,264(5158):556.
10 Ko M, Chae S, Jeong S, et al. Elastic a-silicon nanoparticle backboned graphene hybrid as a self-compacting anode for high-rate lithium ion batteries[J]. ACS Nano, 2014,8(8):8591.
11 Zhang Y Q, Xia X H, Wang X L, et al. Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithiumion batteries[J]. J Power Sources, 2012,213(9):106.
12 Yu C, Liu L, Jie X, et al. Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium-ion batteries[J]. Adv Funct Mater, 2015,25(43):6701.
13 Bie Y, Yu J, Yang J, et al. Porous microspherical silicon composite anode material for lithium ion battery[J]. Electrochim Acta, 2015,178:65.
14 Hao Q, Zhao D, Duan H, et al. Si/Ag composite with bimodal micro-nano porous structure as a high-performance anode for Li-ion batteries[J]. Nanoscale, 2015,7(12):5320.
15 Mi H W, Wu S Q, Zhu P Y, et al. Research progress on Si/C composite anode materials for lithium-ion battery[J]. Mater Rev:Rev, 2013,27(9):23(in Chinese).
米宏伟, 吴双泉, 朱培洋,等. 锂离子电池硅-碳负极材料的研究进展[J]. 材料导报:综述篇, 2013,27(9):23.
16 Long B R, Chan M K Y, Greeley J P, et al. Dopant modulated Li insertion in Si for battery anodes: Theory and experiment[J]. J Phys Chem C, 2011,115(38):18916.
17 Jossen A. Fundamentals of battery dynamics[J]. J Power Sources, 2006,154(2):530.
18 刘恩科,朱秉升,罗晋生. 半导体物理学(第7版)[M]. 北京: 电子工业出版社, 2011:109.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[8] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[9] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[10] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[11] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[12] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[13] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[14] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[15] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed