Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (22): 5-9    https://doi.org/10.11896/j.issn.1005-023X.2017.022.002
  材料研究 |
二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*
张冠群1,许州1,2,刘建雄1,杨艳蓉1,刘成1,程琪1,于晓华3
1 昆明理工大学材料科学与工程学院, 昆明 650093;
2 华南理工大学材料科学与工程学院, 广州 510640;
3 昆明理工大学固体废弃物资源化国家工程研究中心, 昆明 650093
Two step Hydrothermally Synthesized Nest like TiO2/Co3O4 Nanostructures with Good Electrochemical Performance for Lithium Ion Battery
ZHANG Guanqun1, XU Zhou1,2, LIU Jianxiong1, YANG Yanrong1,LIU Cheng1, CHENG Qi1, YU Xiaohua3
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093;
2 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640;
3 National Engineering Research Center of Waste Resource Recovery, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 622KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以TiO2粉末和NaOH为原料,在机械外力场作用下,采用水热法制备TiO2纳米线。随后将得到的TiO2纳米线与六水合硝酸钴(Co(NO3)2·6H2O)和尿素(Urea)共同水热反应制备TiO2/Co3O4纳米结构材料。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪和电化学工作站等,对材料的相组成、微观形貌、锂电性能和阻抗性能进行测试。结果表明,TiO2/Co3O4纳米复合材料为鸟巢状结构,其在33.5 mA/g电流密度下恒电流充放电的首次放电容量为777 mAh/g,充电容量为759 mAh/g,100次循环后的可逆容量仍保持在663 mAh/g,具有良好的循环稳定性和电化学特性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张冠群
许州
刘建雄
杨艳蓉
刘成
程琪
于晓华
关键词:  锂离子电池  电化学性能  循环稳定性  鸟巢状  TiO2纳米线  TiO2/Co3O4复合材料  二次水热法    
Abstract: In this work, a TiO2/Co3O4 nanostructured materials was prepared through a hydrothermal process using cobalt(Ⅱ) nitrate hexahydrate, urea, and hydrothermally pre-synthesized (from TiO2 powders and NaOH and under mechanical stirring) TiO2 nanowires as raw materials. The composition, morphology and electrochemical performance of the product were characterized by employing X-ray diffractometer (XRD), scanning electron microscope (SEM), charging/discharging tester and electrochemical workstation. Our experiments illustrated the nest-like micromorphology, good cyclic stability and electrochemical character of this two-step hydrothermally synthesized TiO2/Co3O4 composites, as the electrode exhibited initial discharge and charge capacities of 777 mAh/g and 759 mAh/g, respectively, and a capacity retention of 663 mAh/g after 100 cycles during constant-current charge/discharge at 33.5 mA/g.
Key words:  lithium ion battery    electrochemical performance    cyclic stability    nest-like    TiO2 nanowire    TiO2/Co3O4 composite    two step hydrothermal synthesis
发布日期:  2018-05-08
ZTFLH:  TB332  
基金资助: *国家自然科学基金(51601081;51665022);省级人培项目(KKSY201628022);省教育厅项目(2016ZZX031)
通讯作者:  刘建雄,男,1962年生,教授,研究方向为金属材料加工E-mail:ljx5192665@163.com于晓华,男,1986年生,博士,研究方向为材料热力学E-mail:xiaohua_y@163.com   
作者简介:  张冠群:女,1991年生,硕士,研究方向为TiO2纳米结构的锂电性能E-mail:zhangguan_qun@126.com
引用本文:    
张冠群,许州,刘建雄,杨艳蓉,刘成,程琪,于晓华. 二次水热法制备鸟巢状TiO2/Co3O4纳米结构及其锂电性能*[J]. 材料导报编辑部, 2017, 31(22): 5-9.
ZHANG Guanqun, XU Zhou, LIU Jianxiong, YANG Yanrong,LIU Cheng, CHENG Qi, YU Xiaohua. Two step Hydrothermally Synthesized Nest like TiO2/Co3O4 Nanostructures with Good Electrochemical Performance for Lithium Ion Battery. Materials Reports, 2017, 31(22): 5-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.022.002  或          https://www.mater-rep.com/CN/Y2017/V31/I22/5
1 Zhang J, Gu P, Xu J, et al. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries[J]. Nanoscale, 2016,44(8):18578.
2 Armand M, Tarascon J M. Building better batteries[J]. Nature, 2008, 451(7179):652.
3 Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414(6861):359.
4 Zhang S T, Zheng M B, Lin Z X, et al. Mango stone-derived activated carbon with high sulfur loading as a cathode material for lithium-sulfur batteries[J]. RSC Adv, 2016,46(6):39918.
5 Liu S, Jia H, Han L, et al. Nanosheet-constructed porous TiO2-B for advanced lithium ion batteries[J]. Adv Mater, 2012,24(24):3201.
6 Ren Y, Liu Z, Robert A A, et al. Nanoparticulate TiO2(B): An anode for lithium-ion batteries[J]. Angew Chem Int Ed, 2012,51(9):2164.
7 Liu S, Wang Z, Yu C, et al. A flexible TiO2(B)-based battery electrode with superior power rate and ultralong cycle life[J]. Adv Mater, 2013,25(25):3462.
8 Hu L, Chen Q. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries[J]. Nanoscale, 2014,6(3):1236.
9 Li S L, Xu Q. Metal-organic frameworks as platforms for clean energy[J]. Energy Environ Sci, 2013,6(6):1656.
10 Jiang J, Li Y, Liu J, et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage[J]. Adv Mater, 2012,24(38):5166.
11 Zhou W, Cheng C, Liu J, et al. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance[J]. Adv Funct Mater, 2011,21(13):2439.
12 Wang J, Yang N, Tang H, et al. Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries[J]. Angew Chem Int Ed, 2013,52(25):6417.
13 Wei Z, Li R, Huang T, et al. Fabrication and electrochemical properties of Si/TiO2 nanowire array composites as lithium ion battery anodes[J]. J Power Sources, 2013,238(28):165.
14 Tang Y, Wu D, Chen S, et al. Highly reversible and ultra-fast lithium storage in mesoporous graphene-based TiO2/SnO2 hybrid nanosheets[J]. Energy Environ Sci, 2013,6(8):2447.
15 Kravchyk K, Prtesescu L, Bodnarchuk M, et al. Monodisperse and inorganically capped Sn and Sn/SnO2 nanocrystals for high-performance Li-ion battery anodes[J]. J Am Chem Soc, 2013,135(11):4199.
16 Li W, Shang K, Liu Y, et al. A novel sandwich-like Co3O4/TiO2 composite with greatly enhanced electrochemical performance as anode for lithium ion batteries[J]. Electrochim Acta, 2015,174(9):85.
17 Mohamed M M, Asghar B H M, Muathen H A. Facile synthesis of mesoporous bicrystallized TiO2 (B)/anatase (rutile) phases as active photocatalysts for nitrate reduction[J]. Catal Commun, 2012,28(44):58.
18 Liu D, Yang Z, Wang P, et al. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes[J]. Nanoscale, 2013,5(5):1917.
19 Pei Y K, Bo Y K, Shim I B, et al. Colloidal polymerization of polymer-coated ferromagnetic nanoparticles into cobalt oxide nanowires[J]. ACS Nano, 2009,3(3):3143.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 李朋娟, 邹振羽, 黄鹏飞, 金鑫, 吴晓雨, 李晓丽. N/O/P共掺杂三聚氰胺基多孔碳材料的制备及储锌性能研究[J]. 材料导报, 2025, 39(2): 23100113-7.
[3] 王丕, 宋琛, 董东东, 曾德长, 刘太楷, 文魁, 毛杰, 刘敏. 多孔Fe24Cr金属支撑体厚度对SOFC性能的影响[J]. 材料导报, 2025, 39(1): 23110193-7.
[4] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[5] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[6] 刘亭亭, 田国兴, 赵欣, 余新勇, 毛超, 于雪寒, 陈玲. 三维网络结构镍钴氢氧化物/石墨烯水凝胶复合材料的合成及电化学性能[J]. 材料导报, 2024, 38(5): 22070064-7.
[7] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[8] 杨文秀, 王冰冰, 俞小花, 田林, 谢刚. 热分解温度对IrO2-RuO2-SnO2/Ti阳极微观形貌及性能的影响[J]. 材料导报, 2024, 38(24): 23080117-5.
[9] 俞小花, 李影, 谭皓天, 沈庆峰, 王发强, 谢刚. 十二烷基三甲基氯化铵对铝-空气电池Al-0.8Bi阳极性能的影响[J]. 材料导报, 2024, 38(23): 23070127-6.
[10] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[11] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[12] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[13] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[14] 刘泉宇, 彭程, 黄东方, 赵瑞雪, 周权宝, 吕朋, 王学刚. 表面处理技术在储氢材料中的应用研究进展[J]. 材料导报, 2024, 38(20): 23040255-12.
[15] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed