Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120220-7    https://doi.org/10.11896/cldb.24120220
  无机非金属及其复合材料 |
以碳化硅为发泡剂的铁尾矿多孔陶瓷的制备及性能研究
牛舒楠1, 郑丽君1,*, 高艺萌1, 曲佳音1, 王继福1, 王鹏2
1 辽宁科技大学材料与冶金学院,辽宁 鞍山 114051
2 鞍山市和丰耐火材料有限公司,辽宁 鞍山 114225
Preparation and Properties of Iron Tailings Porous Ceramics Using Silicon Carbide as Foaming Agent
NIU Shunan1, ZHENG Lijun1,*, GAO Yimeng1, QU Jiayin1, WANG Jifu1, WANG Peng2
1 School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, Liaoning, China
2 Anshan Hefeng Refractories Co.,Ltd., Anshan 114225, Liaoning, China
下载:  全 文 ( PDF ) ( 12258KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以鞍山铁尾矿为主要原料,辅以Al2O3、四硼酸钠和SiC,采用发泡法结合常压烧结技术在1 110~1 140 ℃保温30 min的条件下,成功制备了铁尾矿多孔陶瓷。系统考察了烧结温度和SiC发泡剂添加量对多孔陶瓷微观结构与性能的影响。研究表明,多孔陶瓷的矿物相主要为方石英、石英、赤铁矿和钙长石。SiC发泡剂的加入显著优化了样品的孔隙结构,提高了显气孔率,并在一定程度上增强了耐压强度,但对热导率的影响相对较小。相比之下,烧结温度对热导率的影响更为显著,当烧结温度升高至1 130 ℃时,气孔结构趋于均匀,热导率降至最低,有效提升样品的隔热性能。当SiC添加量为3%时,样品在1 130 ℃保温30 min的孔结构较均匀,体积密度为0.85 g/cm3,显气孔率为62.06%,耐压强度为8.69 MPa,热导率为0.30 W/(m·K),此时制备的多孔陶瓷具备更优良的结构与性能,表明铁尾矿适用于做保温隔热材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛舒楠
郑丽君
高艺萌
曲佳音
王继福
王鹏
关键词:  铁尾矿  多孔陶瓷  碳化硅  烧结温度    
Abstract: Iron tailings (IOT) porous ceramics were successfully prepared by using Anshan iron tailings as the main raw material, supplemented with Al2O3, sodium tetraborate and SiC, using the foaming method combined with the atmospheric pressure sintering technique under the condition of holding temperature of 1 110—1 140 ℃ for 30 min. The effects of sintering temperature and SiC blowing agent addition on the microstructure and properties of the porous ceramics were systematically investigated. It was shown that the mineral phases of the porous ceramics were mainly cristobalite, quartz, hematite and anorthite. The addition of SiC blowing agent significantly optimizes the pore structure of the samples, increases the apparent porosity, and enhances the compressive strength to a certain extent, but has relatively little effect on the thermal conductivity. In contrast, the effect of sintering temperature on thermal conductivity was more significant, when the sintering temperature was increased to 1 130 ℃, the pore structure tends to be homogeneous, and the thermal conductivity is reduced to the minimum, which effectively improves the thermal insulation performance of the samples. When the addition amount of SiC was 3%, the pore structure of the sample was more uniform at 1 130 ℃ for 30 min. The bulk density was 0.85 g/cm3, the apparent porosity was 62.06%, the compressive strength was 8.69 MPa, and the thermal conductivity is 0.30 W/(m·K), and in this case, the porous ceramics prepared has a better structure and performance, indicating that IOT is suitable for doing thermal insulation materials.
Key words:  iron tailings    porous ceramics    silicon carbide    sintering temperature
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TQ174  
基金资助: 国家自然科学基金联合基金项目(U20A20239)
通讯作者:  *郑丽君,博士,辽宁科技大学材料与冶金学院副教授、硕士研究生导师。目前主要从事冶金用耐火材料、热电材料等方面的研究工作。lijunzheng@ustl.edu.cn   
作者简介:  牛舒楠,现为辽宁科技大学材料与冶金学院硕士研究生,在郑丽君副教授的指导下进行研究。目前主要研究领域为尾矿的综合利用。
引用本文:    
牛舒楠, 郑丽君, 高艺萌, 曲佳音, 王继福, 王鹏. 以碳化硅为发泡剂的铁尾矿多孔陶瓷的制备及性能研究[J]. 材料导报, 2026, 40(2): 24120220-7.
NIU Shunan, ZHENG Lijun, GAO Yimeng, QU Jiayin, WANG Jifu, WANG Peng. Preparation and Properties of Iron Tailings Porous Ceramics Using Silicon Carbide as Foaming Agent. Materials Reports, 2026, 40(2): 24120220-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120220  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120220
1 Wang Y M, Chang Q F. Metal Mine, 1999, 271(1), 1(in Chinese).
王运敏, 常前发. 金属矿山, 1999, 271(1), 1.
2 Tang Z H, Zhang M X, Zhang X F, et al. Journal of Non-Crystalline Solids, 2019, 513, 15.
3 Li L, Jiang T, Chen B J, et al. Process Safety and Environmental Protection, 2020, 139, 305.
4 Li R F, Zhou Y, Zheng Y, et al. Rare Metal Materials and Engineering, 2018, 47(1), 103(in Chinese).
李润丰, 周洋, 郑涌, 等. 稀有金属材料与工程, 2018, 47(1), 103.
5 Wang Y J. Study of foam ceramic prepared from high-sulfur ergo-gold tailings. Master’s Thesis, Wuhan University of Technology, China, 2016(in Chinese).
王亚婕. 金尾矿高硫选冶尾渣制备泡沫陶瓷. 硕士学位论文, 武汉理工大学, 2016.
6 Chi Y Z, Yu A M, Shen G Y, et al. China Ceramics, 2009, 45(10), 69(in Chinese).
池跃章, 余爱民, 沈光银, 等. 中国陶瓷, 2009, 45(10), 69.
7 Peng T E, Li H C, Liu Y L, et al. Ceramics, 2019, 12(14), 9 (in Chinese).
彭团儿, 李洪潮, 刘玉林, 等. 陶瓷, 2019, 12(14), 9.
8 Ji R, Zheng Y X, Zou Z H, et al. Construction and Building Materials, 2019, 215, 623.
9 Gao X Y. Study on low temperature sintering of environmentfriendly ceramics for lightweight and thermal insulation. Master’s Thesis, South China University of Technology, China, 2018(in Chinese).
高小云. 环保型轻质隔热陶瓷的低温烧成研究. 硕士学位论文, 华南理工大学, 2018.
10 Yu H H, Xue X X, Huang D W. The Chinese Journal of Nonferrous Metals, 2008, 18(11), 2076(in Chinese).
于洪浩, 薛向欣, 黄大威. 中国有色金属学报, 2008, 18(11), 2076.
11 Wang D H. Decoupling mechanical and wetting stability for robust superhydrophobic surfaces and application. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2020(in Chinese).
王德辉. 浸润性与机械稳定性拆分强化构筑超疏水表面及其应用研究. 博士学位论文, 电子科技大学, 2020.
12 Chen G S, Bao L N, Liu S X. Mineralogy fundamentals, Metallurgical Industry Press, China, 2010, pp. 135(in Chinese).
陈国山, 包丽娜, 刘树新. 矿石学基础, 冶金工业出版社, 2010, pp. 135.
13 Li X M, Sun D Y, Yang Q, et al. Journal of the European Ceramic Society, 2021, 41, 6330.
14 Zhang Y L. Fundamental research on preparation of high-temperature floamed ceramics. Master’s Thesis, South China University of Technology, China, 2014(in Chinese).
张勇林. 高温发泡陶瓷制备基础研究. 硕士学位论文, 华南理工大学, 2014.
15 Nasiri N A, Patra N, Ni N, et al. Journal of the European Ceramic Society, 2016, 36, 3293.
16 Wang H B, Sun Q Z. China Ceramics, 2019, 55(6), 36(in Chinese).
王海波, 孙青竹. 中国陶瓷, 2019, 55(6), 36.
17 Xi C P, Zhou J M, Zheng F, et al. Journal of Environmental Management, 2020, 261, 110197.
18 Wu Y X, Li D, Wei H T. Material Sciences, 2013, 36(3), 13 (in Chinese).
吴益雄, 李丹, 魏洪涛. 材料科学, 2013, 36(3), 13.
19 Bai Z M, Deng Z X. Physical chemistry of silicate, Chemical Industry Press, China, 2018, pp. 111 (in Chinese).
白志民, 邓雁希. 硅酸盐物理化学, 化学工业出版社, 2018, pp. 111.
20 Pei D J. Study on the mechanism and application of Si-Ca based multicomponent ceramics prepared from metallurgical slags. Ph. D. Thesis, University of Science and Technology Beijing, China, 2019 (in Chinese).
裴德健. 利用冶金渣制备硅钙基多元体系陶瓷的机理及应用研究. 博士学位论文, 北京科技大学, 2019.
21 Zhan H X, Lu G, Yan Q S, et al. Acta Materiae Compositae Sinica, 2021, 38(5), 1588(in Chinese).
占红星, 芦刚, 严青松, 等. 复合材料学报, 2021, 38(5), 1588.
22 Chen Z, Yan W, Schafföner W, et al. Journal of Alloys and Compounds, 2018, 764, 210.
23 Jacobson N S, Smialek J L. Journal of the American Ceramic Society, 1985, 68, 432.
24 Fox D S, Jacobson N S. Journal of the American Ceramic Society, 1988, 71, 128.
25 Xiao Z D, Xuan W D, Duan F M, et al. Foundry, 2021, 70(9), 1072(in Chinese).
肖祖德, 玄伟东, 段方苗, 等. 铸造, 2021, 70(9), 1072.
26 Lemougna P N, Yliniemi J, Adesanya E, et al. Minerals Engineering, 2020, 155, 106448.
27 Li Q J, Gong J Z, Xiao J S, et al. Journal of Wuhan Institute of Technology, 2022, 44(1), 60(in Chinese).
李沁键, 龚加志, 肖金坤 等. 武汉工程大学学报, 2022, 44(1), 60.
28 Wang Q Q. Study on porous thermal insulation ceramic composites prepared by low-grade potassium feldspar. Master’s Thesis, Xinyang Normal University, China, 2018(in Chinese).
王琦琦. 低品位钾长石制备多孔保温隔热陶瓷复合材料研究. 硕士学位论文, 信阳师范学院, 2018.
29 Rincon A, Desideri D, Bernarod E. Journal of Cleaner Production, 2018, 187, 250.
30 Wang H, Chen Z W, Liu L L, et al. Ceramics International, 2018, 44, 10078.
31 Rincon A, Desideri D, Bernarod E. Journal of Cleaner Production, 2018, 187, 250.
[1] 杨皓, 李太, 张广鑫, 吕国强, 陈秀华. 碳化硅单晶制备方法及缺陷控制研究进展[J]. 材料导报, 2026, 40(2): 24100235-13.
[2] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[3] 范明辉, 李薇, 焦宇浩, 任文渊, 罗滔, 赵丁筱烨. 基于SR-SSA-SVR的铁尾矿砂混凝土抗压强度预测[J]. 材料导报, 2025, 39(24): 24120042-8.
[4] 佘艾馨, 黄仲, 高亚博, 王咏琪, 刘江昊, 张海军. 工业烟气除尘用多孔陶瓷材料[J]. 材料导报, 2025, 39(23): 24120025-9.
[5] 孙紫豪, 徐子芳, 卢奇奇, 扈霜月, 查子欣, 许鑫雨. 多源固废协同制备高性能吸声保温陶瓷及微观性能分析[J]. 材料导报, 2025, 39(16): 24080024-7.
[6] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[7] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[8] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[9] 刘娟红, 安树好, 陈德平, 张月月. 融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能[J]. 材料导报, 2024, 38(21): 23010110-10.
[10] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[11] 田小平, 王长龙, HidayatiAsrah, Lim Chung Han, 平浩岩, 齐洋, 马锦涛, 荆牮霖, 刘治兵, 郑永超, 翟玉新, 刘枫. 钒钛铁尾矿制备绿色建筑材料的研究进展[J]. 材料导报, 2024, 38(19): 23070040-10.
[12] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[13] 周振豪, 姜勇刚, 冯军宗, 李良军, 冯坚. 直写成型制备多孔陶瓷技术研究进展[J]. 材料导报, 2023, 37(4): 20120004-7.
[14] 李萌, 艾建平, 胡丽玲, 程丽红, 帅亚萍, 罗司玲, 周泽华, 陈智琴, 李文魁. YSZ多孔陶瓷的孔隙结构特征及压缩强度研究[J]. 材料导报, 2023, 37(24): 22060249-7.
[15] 安树好, 刘娟红, 张月月, 李康. 矿渣粉与超细铁尾矿粉在无熟料固结体中的协同水化机制[J]. 材料导报, 2023, 37(22): 22080235-10.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed