Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24080024-7    https://doi.org/10.11896/cldb.24080024
  无机非金属及其复合材料 |
多源固废协同制备高性能吸声保温陶瓷及微观性能分析
孙紫豪, 徐子芳*, 卢奇奇, 扈霜月, 查子欣, 许鑫雨
安徽理工大学材料科学与工程学院,安徽 淮南 232001
Multi Source Solid Waste Collaborative Preparation of High-performance Sound-absorbing and Insulation Ceramics and Micro Performance Analysis
SUN Zihao, XU Zifang*, LU Qiqi, HU Shuangyue, ZHA Zixin, XU Xinyu
School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, Anhui, China
下载:  全 文 ( PDF ) ( 20667KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于煤系废物开发制备吸声材料可以解决工业废物与环境噪声污染问题。本研究以煤矸石与废玻璃渣为基础骨架,采用直接发泡法,以碳化硅(SiC)作为发泡剂成功制备了吸声泡沫陶瓷。重点分析制备产品的烧结温度和烧结时间对样品气孔率、导热系数和吸声性能的影响,并对样品微观形貌及孔径分布进行了分析。结果表明,当m(煤矸石)∶m(玻璃渣)∶m(黏土)=60∶20∶20,外掺质量分数0.7%的SiC,最佳烧结温度为1 175 ℃,烧结时间为40 min时,泡沫陶瓷真气孔率与导热系数分别为77.3%、0.19 W/(m·K),200~6 300 Hz频率下平均吸声系数为0.41,中高频吸收峰值达到0.95。泡沫陶瓷具有较低的导热系数与良好的吸声能力,有望作为一种保温和降噪材料应用于建筑行业。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙紫豪
徐子芳
卢奇奇
扈霜月
查子欣
许鑫雨
关键词:  煤矸石  泡沫陶瓷  废玻璃渣  碳化硅  吸声性能    
Abstract: The development and preparation of sound-absorbing materials based on coal waste can solve the problem of industrial waste and environmental noise pollution. In this work, the sound-absorbing foam ceramics were successfully prepared by using coal gangue and waste glass slag as the basic framework and silicon carbide (SiC) as foaming agent by direct foaming method. The effect of sintering temperature and time on the porosity, thermal conductivity and sound absorption properties of the samples was explored emphatically, while the micro morphology and pore size distribution of the samples were analyzed. The results show that when m (coal gangue)∶m (glass slag)∶m (clay)=60∶20∶20, addition content of SiC is 0.7%, the optimal sintering temperature is 1 175 ℃, and the sintering time is 40 min, foam ceramic has low thermal conductivity and good sound absorption ability, with true porosity and thermal conductivity of 77.3% and 0.19 W/(m·K), respectively, the average sound absorption coefficient of 0.41 at 200—6 300 Hz, and the peak value of medium and high frequency absorption of 0.95. It is expected to be used as a thermal insulation and noise reduction material in the construction industry.
Key words:  coal gangue    porous ceramics    waste glass slag    silicon carbide    sound absorption performance
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TB332  
基金资助: 安徽理工大学联合研发课题(HX2021062328); 2023年省级大学生创新训练计划项目(S202310361001X;S202310361038)
通讯作者:  徐子芳,博士,安徽理工大学材料科学与工程学院教授、硕士研究生导师。目前主要从事尾矿综合利用及技术开发、电致变色玻璃膜等方面的研究工作。zhfxubao@163.com   
作者简介:  孙紫豪,安徽理工大学材料工程硕士研究生,在徐子芳教授的指导下进行研究。目前主要研究领域为尾矿综合利用及技术开发。
引用本文:    
孙紫豪, 徐子芳, 卢奇奇, 扈霜月, 查子欣, 许鑫雨. 多源固废协同制备高性能吸声保温陶瓷及微观性能分析[J]. 材料导报, 2025, 39(16): 24080024-7.
SUN Zihao, XU Zifang, LU Qiqi, HU Shuangyue, ZHA Zixin, XU Xinyu. Multi Source Solid Waste Collaborative Preparation of High-performance Sound-absorbing and Insulation Ceramics and Micro Performance Analysis. Materials Reports, 2025, 39(16): 24080024-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080024  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24080024
1 Zhang L,Liu C J,Chen Y,et al.Mining Safety & Environmental Protection,2025,52(1), 160(in Chinese).
张蕾,刘春江,陈雅,等.矿业安全与环保,2025,52(1),160.
2 Zhang H L, Teng Z D, Jiang X L, et al. Environmental Chemistry, 2024, 43(6), 1(in Chinese).
张华林, 滕泽栋, 江晓亮, 等. 环境化学, 2024, 43(6), 1.
3 Zhou Y, Peng W G, Zhang Q W, et al.Mining Safety & Environmental Protection,https://link.cnki.net/urlid/50.1062.td.20241018.1140.002(in Chinese).
周宇, 彭文国, 张琦琦, 等.矿业安全与环保, https://link.cnki.net/urlid/50.1062.td.20241018.1140.002.
4 Wang D, Peng L M, Fu F, et al. Polymer Composites, 2017, 39, 3823.
5 Jing Q S, Tang Y T, Tian Y S, et al. Bulletin of the Chinese Ceramic Society, 2019, 38(12), 3833(in Chinese).
井强山, 唐旖天, 田永尚, 等. 硅酸盐通报, 2019, 38(12), 3833.
6 Sun P, Li Y, Guo Z C. Journal of the Chinese Ceramic Society, 2015, 43(6), 753(in Chinese).
孙朋, 李宇, 郭占成. 硅酸盐学报, 2015, 43(6), 753.
7 He C, Shui A Z, Ma J, et al. Ceramics International, 2020, 46, 29339.
8 Qi L Q, Xu J, Liu K Y. Environmental Science and Pollution Research, 2019, 26, 22264.
9 Xie C D, Zhang L. China Ceramics, 2022, 58(5), 51(in Chinese).
解传娣, 张雷. 中国陶瓷, 2022, 58(5), 51.
10 Li X M, Zheng M Y, Li R, et al. Ceramics International, 2019, 45, 11982.
11 Huang G D, Ji Y S, Li J, et al. Construction and Building Materials, 2018, 166, 760.
12 Li X, Pan M B, Tao M Y, et al. Ceramics International, 2022, 48, 37055.
13 Zhang C S, Wang X, Zhu H J, et al. Ceramics International, 2020, 46, 23623.
14 Zhang J H, Meng F H, Wang L N, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(3), 960(in Chinese).
张敬浩, 孟凡会, 王丽娜, 等. 硅酸盐通报, 2023, 42(3), 960.
15 Wang C, Wang S H, Li X N, et al. International Journal of Applied Ceramic Technology, 2021, 18, 1052.
16 Shui A Z, Xi X, Wang Y M, et al. Ceramics International, 2011, 37, 1557.
17 Du Z P, Yao D X, Xia Y F, et al. Journal of Alloys and Compounds, 2020, 820, 153067.
18 Li X, Pan M B, Wu X P, et al. Ceramics International, 2022, 48, 10311.
19 Dong X, An Q L, Zhang S P, et al. Ceramics International, 2023, 49, 31035.
20 Yang F Y, Zhao S, Sun W C, et al. Journal of the European Ceramic Society, 2023, 43, 521.
21 Lou J Y, He C, Shui A Z, et al. Ceramics International, 2023, 49, 38103.
22 Letellier M, Mosanenzadeh S G, Naguib H, et al. Carbon, 2017, 119, 241.
[1] 李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
[2] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[3] 夏军武, 朱致淳, 林俊东, 何源, 于峻, 柏建彪. BFRP约束煤矸石混凝土轴压本构模型研究[J]. 材料导报, 2025, 39(16): 24070132-6.
[4] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[5] 杨正辉, 朱涛, 张东生, 杨秋宁, 毛明杰. 纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究[J]. 材料导报, 2025, 39(15): 24050076-11.
[6] 李亚清, 宋沆, 邓军, 张玉涛, 刘庆贺, 郭强. 煤矸石固废资源化利用制备分子筛研究现状及进展[J]. 材料导报, 2025, 39(15): 24060232-11.
[7] 汪德才, 魏家伟, 胡磊, 张庆, 董是, 杨澜, 成凯. 路面基层混合料煤矸石掺配方式及耐久性试验研究[J]. 材料导报, 2025, 39(11): 24010125-10.
[8] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[9] 于乐乐, 王爱国, 仲小凡, 刘开伟, 潘耀辉, 肖必华, 孙道胜. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报, 2024, 38(20): 23080244-9.
[10] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[11] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[12] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[13] 曹梦媛, 于素慧, 袁健, 王炜, 张少辉, 王艳. CO2养护煤矸石粗骨料性能研究[J]. 材料导报, 2024, 38(14): 23030104-8.
[14] 刘泽, 段开瑞, 周梅, 张海波, 罗树琼, 房奎圳, 王栋民. 煤矸石在土木工程材料中的应用研究进展[J]. 材料导报, 2024, 38(10): 23050198-12.
[15] 孙志辉, 赵帅. “双碳”背景下煤矸石高附加值功能化改性技术现状与展望[J]. 材料导报, 2023, 37(S1): 23040034-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed