Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24050076-11    https://doi.org/10.11896/cldb.24050076
  无机非金属及其复合材料 |
纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究
杨正辉1, 朱涛1, 张东生2, 杨秋宁1, 毛明杰1,*
1 宁夏大学土木与水利工程学院,银川 750021
2 鲁汶大学土木工程系,布鲁日 8200
Study on the Properties of Nano-Al2O3 and Steel Fiber Composite Reinforced Geopolymer Grouting Materials
YANG Zhenghui1, ZHU Tao1, ZHANG Dongsheng2, YANG Qiuning1, MAO Mingjie1,*
1 School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan 750021, China
2 Department of Civil Engineering, KU Leuven, Bruges 8200, Belgium
下载:  全 文 ( PDF ) ( 22902KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤矸石是煤矿开采过程中产生的工业固废,将其作为胶凝材料用于制备地聚合物灌浆材料,是充分利用煤矸石,实现绿色低碳发展的有效途径。本工作将球磨后的煤矸石粉和矿渣作为胶凝材料,并利用不同体积掺量的钢纤维(SF)(0%、0.5%、1.0%、1.5%、2.0%)和纳米Al2O3(1.0%、2.0%、3.0%)对其改性,通过宏观力学与微观测试相结合的方法,研究了钢纤维单独作用和钢纤维在最优掺量下复合纳米Al2O3时地聚合物灌浆材料的力学性能、流变性能及微观分析。结果表明,单掺SF时最优掺量为1.5%,SF和纳米Al2O3复掺,掺量分别为1.5%、2.0%时,砂浆性能最优。28 d时,复掺试样抗压强度、抗折强度、断裂能分别增加了23.08%、34.55%、12.10%。塑性黏度和屈服应力均随着SF和纳米Al2O3掺量增加而增加。微观结构分析表明,相较于基准组,复掺后地聚合物产生了更多的C-(A)-S-H凝胶,孔隙率降低,基体变得更加致密。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨正辉
朱涛
张东生
杨秋宁
毛明杰
关键词:  煤矸石粉  钢纤维  纳米Al2O3  断裂性能  流变性能    
Abstract: Coal gangue, as an industrial solid waste generated in the process of coal mining, can be used as a gel material to prepare geopolymer grouting materials. It is an effective way to make full use of coal gangue and achieve green and low-carbon development. In this work, the crushed coal gangue powder by ball milling and slag were used as matrix, and modified by different volume fractions of steel fiber (SF) (0%, 0.5%, 1.0%, 1.5%, 2.0%) and nano-Al2O3(1.0%, 2.0%, 3.0%). Then the mechanical properties, rheological properties and microscopic analysis of the composite nano-Al2O3 grouting materials were studied by macroscopic mechanics and microscopic tests. The results show that the optimal volume fraction of SF alone is 1.5%, and the mortar performance is the best when SF and nano-Al2O3 are 1.5% and 2.0%, respectively. At 28 days, the compressive strength, flexural strength and fracture energy of the compound doping increased by 23.08%, 34.55% and 12.10%, respectively. Both the plastic viscosity and the yield stress increased with the increase of SF and nano-Al2O3 content. Microstructure analysis of the composite grouting material showed that more C-(A)-S-H gels were produced, the porosity was reduced, and the matrix became denser than the reference group.
Key words:  gangue powder    steel fiber    nano alumina    fracture property    rheological property
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51568055);宁夏回族自治区重点研发计划(2021BEG02014)
通讯作者:  毛明杰,博士,宁夏大学土木与水利工程学院教授、博士研究生导师。现任宁夏大学土木与水利工程学院院长。目前主要从事土木工程结构、新型建筑材料等方面的研究工作。maomj@nxu.edu.cn   
作者简介:  杨正辉,宁夏大学硕士研究生,主要研究土木工程材料及固废资源再利用等。
引用本文:    
杨正辉, 朱涛, 张东生, 杨秋宁, 毛明杰. 纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究[J]. 材料导报, 2025, 39(15): 24050076-11.
YANG Zhenghui, ZHU Tao, ZHANG Dongsheng, YANG Qiuning, MAO Mingjie. Study on the Properties of Nano-Al2O3 and Steel Fiber Composite Reinforced Geopolymer Grouting Materials. Materials Reports, 2025, 39(15): 24050076-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050076  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24050076
1 Davidovits J. Journal of Thermal Analysis and Calorimetry, 2005, 35 (2), 429.
2 Wang A, Zheng Y, Zhang Z, et al. Materials Reports, 2019, 33(15), 2552(in Chinese).
王爱国, 郑毅, 张祖华, 等. 材料导报, 2019, 33(15), 2552.
3 Fan F, Liu Z, Xu G, et al. Construction and Building Materials, 2018, 160, 66.
4 Acevedo-Martinez E, Gomez-Zamorano L, Escalante-Garcia J. Construction and Building Materials, 2012, 37, 462.
5 Sun X. The preparation and properties research on alikali activated steel slag-slag grouting material. Master's Thesis. Chongqing University, China, 2017(in Chinese).
孙幸福. 碱激发钢渣—矿渣基灌浆材料的制备与性能研究. 硕士学位论文. 重庆大学, 2017.
6 Wang H, Zhang G, Ding Q, et al. Journal of Building Materials, 2007(3), 374(in Chinese).
王红喜, 张高展, 丁庆军, 等. 建筑材料学报, 2007(3), 374.
7 Yin S, Guan H, Hu J, et al. Journal of South China University of Technology(Natural Science Edition), 2019, 47(8), 120(in Chinese).
殷素红, 管海宇, 胡捷, 等. 华南理工大学学报(自然科学版), 2019, 47(8), 120.
8 Zhang L,Liu C J,Chen Y,et al.Mining Safety & Environmental Protection,2025,52(1), 160(in Chinese).
张蕾,刘春江,陈雅,等.矿业安全与环保,2025,52(1),160.
9 Huang X M,Rao J L , Du K .Mining Safety & Environmental Protection,2023,50(6),92(in Chinese).
黄学满,饶吉来,杜凯.矿业安全与环保,2023,50(6),92.
10 Liu C, Deng X, Liu J, et al. Construction and Building Materials, 2019, 221, 691.
11 Zhou M, Zhao H, Lu Q, et al. Non-Metallic Mines. 2014, 37(5), 4(in Chinese).
周梅, 赵华民, 路其林, 等. 非金属矿, 2014, 37(5), 4.
12 Lan Y. Study on the preparation and properties of high-performance cement-based grouting material. Master's Thesis. Inner Mongolia University of Science and Technology, China, 2012 (in Chinese).
兰英静. 高性能水泥基灌浆材料的配制与性能研究. 硕士学位论文, 内蒙古科技大学, 2012.
13 Wang G, Pei X, Yang K. Journal of Geological Hazards and Environment Preservation, 2013, 24 (3), 109 (in Chinese).
王刚, 裴向军, 杨珂. 地质灾害与环境保护, 2013, 24 (3), 109.
14 Liang Y. Research on the prerformance of polypropylene fiber cement material forpavement grouting. Master's Thesis. Chongqing Jiaotong University, China, 2017(in Chinese).
梁影. 聚丙烯纤维水泥浆板底灌浆材料性能研究. 硕士学位论文, 重庆交通大学, 2017.
15 Hawreen A, Bogas J. Construction and Building Materials, 2019, 198, 70.
16 Ren Z, Liu Y, Yuan L, et al. Journal of Building Engineering, 2021, 35, 102073.
17 Vikan H, Justnes H. Cement and Concrete Research, 2007, 37(11), 1512.
18 Artelt C, Garcia E. Cement and Concrete Research, 2008, 38(5), 633.
19 Kwan A, Fung W, Wong H. Advances in Cement Research, 2010, 22(1), 3.
20 Zhu H. Study on basic properties of steel fiber fly ash geopolymer concrete. Master's Thesis. Liaoning Technical University, China, 2017(in Chinese).
朱海洋. 钢纤维粉煤灰地质聚合物混凝土的力学性能研究. 硕士学位论文. 辽宁工程技术大学, 2017.
21 Štefančič M, Mladenovič A, Bellotto M, et al. Construction and Building Materials, 2017, 139256.
22 Du H. Experimental study on preparation of underwater non dispersive steel fiber concrete based on rheological properties. Master's Thesis. North China University of Water Resources and Electric Power, China. 2023(in Chinese).
杜浩. 基于流变性能的水下不分散钢纤维混凝土制备试验研究. 硕士学位论文. 华北水利水电大学, 2023.
23 Niu, Y, Cheng, C, Luo C, et al. Construction and Building Materials, 2023, 408, 133420.
24 Chen Y, Wu X, Yin W, et al. Materials, 2023, 16(9), 3590.
25 Yi J, Guo G, Li G, et al. Journal of Changzhou Institute of Technology. 2023, 36(2), 1(in Chinese).
易金明, 郭广磊, 李古喧, 等. 常州工学院学报, 2023, 36(2), 1.
26 Tang Y, Xiao J, Xia B. Journal of Architecture and Civil Engineering, 2025, 42(2), 114(in Chinese).
唐宇翔, 肖建庄, 夏冰. 建筑科学与工程学报, 2025, 42(2), 114
27 Jin Y, Tao Y, Chai D, et al. Journal of Civil and Environmental Engineering, 2023, 45(2), 150(in Chinese).
金轶凡, 陶燕, 柴栋, 等. 土木与环境工程学报, 2023, 45(2), 150.
28 Yang S, Zhao R, Guo Q, et al. Advanced Engineering Sciences, 2022, 54(6), 230(in Chinese).
杨世玉, 赵人达, 郭秋雨, 等. 工程科学与技术, 2022, 54(6), 230.
29 Wan C, Jiang T. Acta Materiae Compositae Sinica, 2024, 41(2), 952 (in Chinese).
万聪聪, 姜天华. 复合材料学报, 2024, 41(2), 952
30 He Y. Effect of nano-alumina content on permeability and mechanical properties of metakonlin geopolymer mortar. Master's Thesis. Shaoxing University, China, 2021(in Chinese).
何曜谷. 纳米氧化铝的掺量对偏高岭土地聚合物渗透性能及力学性能的影响. 硕士学位论文, 绍兴文理学院, 2021.
31 Li H, Xiao H, Yuan J, et al. Composites Part B, 2004, 35(2), 185.
32 Lu M. Preparation and properties of alkali-ativated/heat-activated coal gangue cementing materials. Master's Thesis. ShanDong JiaoTong University, China, 2023(in Chinese).
卢明阳. 碱激发/热活化煤矸石胶凝材料的制备与性能. 硕士学位论文, 山东交通学院, 2023.
[1] 李大虎, 李晓丽, 赵晓泽, 郭长旭. 活化煤矸石粉对砒砂岩水泥复合土强度影响的试验研究[J]. 材料导报, 2025, 39(9): 24010148-6.
[2] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[3] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[4] 张雷, 姜超, 朱学军, 谢群, 刘文胜, 赵振振, 郑元武, 李阳. 混杂纤维水泥基复合材料弯曲性能试验研究[J]. 材料导报, 2025, 39(14): 24040120-8.
[5] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[6] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[7] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[8] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[9] 郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
[10] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[11] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[12] 赵胜前, 游庆龙, 李京洲, 尹杰, 黄之懿. 改性聚酯纤维对机场水泥混凝土的增韧阻裂效果分析[J]. 材料导报, 2024, 38(13): 23030172-8.
[13] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[14] 王虎, 武少杰, 董翼纶, 程方杰. 热输入对埋弧增材厚壁构件微观组织与冲击韧性的影响[J]. 材料导报, 2024, 38(11): 22120217-5.
[15] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed