Please wait a minute...
材料导报  2025, Vol. 39 Issue (15): 24040219-9    https://doi.org/10.11896/cldb.24040219
  无机非金属及其复合材料 |
二次铝灰烧结渣料磨细粉对改性硫氧镁水泥基材料性能的影响及机理研究
崔嘉铭, 马红瑞, 马哲洋, 纪璐鑫, 王胜, 巴明芳*
宁波大学土木工程与地理环境学院,浙江 宁波 315211
Study on the Effect and Mechanism of Secondary Aluminum Ash Sintering Slag Grinding Fine Powder on the Properties of Modified Magnesium Sulfide Cement-based Materials
CUI Jiaming, MA Hongrui, MA Zheyang, JI Luxin, WANG Sheng, BA Mingfang*
School of Civil & Environment Engineering and Geography Science, Ningbo University, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 18848KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了改善改性硫氧镁(Modified magnesium oxysulfate,MMOS)水泥基材料的性能,研究了二次铝灰烧结渣料磨细粉(DF)对MMOS水泥基材料工作性能和力学性能的影响,采用XRD、SEM、FTIR、TG等微观测试技术对其影响机理进行了分析。结果表明:随着DF掺量增加,MMOS水泥基材料的工作性能呈增长趋势,当DF掺量在10%以内时,力学性能早期变化不大,后期呈增长趋势,且在低水胶比时力学性能更优。随着养护龄期延长,不同DF掺量的MMOS水泥试样早期力学性能变化不明显,而在后期力学性能显著增长。微观分析表明,过高的DF掺量会延缓水化反应进程,导致水化产物5·1·7相(5Mg(OH)2·MgSO4·7H2O)生成速率降低,从而改善MMOS水泥基材料的工作性能,但会降低其早期力学性能。此外,MMOS水泥基材料中的重金属及有害物质浸出含量指标符合《水泥窑协同处置固体废弃物技术规范》标准。这为发挥建材领域对二次铝灰的消纳能力,实现其高值资源化利用提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔嘉铭
马红瑞
马哲洋
纪璐鑫
王胜
巴明芳
关键词:  二次铝灰烧结渣料磨细粉  改性硫氧镁水泥基材料  工作性能  力学性能  重金属浸出  水化机理    
Abstract: In order to improve the performance of modified magnesium oxide (MMOS) cement-based materials, the influence of secondary aluminum ash sintering slag grinding fine powder (DF) on their workability and mechanical properties was investigated. Microscopic testing techniques including XRD, SEM, FTIR, and TG were employed to analyze the mechanism of this influence. The results indicate that with increasing of DF content, the workability of MMOS cement-based materials is promoted,when the DF content is within 10%. The mechanical properties initially show little variation but tend to increase with higher DF content, particularly at lower water-cement ratios. As curing time progresses, early-stage mechanical properties of MMOS cement specimens with different DF contents exhibit minimal change, while significant improvement is observed in later stages. Microscopic analysis reveals that excessive DF content delays the hydration reaction process, leading to a decreased rate of hydration product formation such as 5·1·7 phase (5Mg(OH)2·MgSO4·7H2O), thereby enhancing the workability of MMOS cement-based materials while reducing their early-stage mechanical properties. Furthermore, leaching tests confirm that heavy metal and harmful substance content in MMOS cement-based materials comply with standards set by the "Technical Specification for Cement Kiln Co-processing of Solid Waste". These findings provide a theoretical foundation for utilizing secondary aluminum ash in building materials, emphasizing its potential for high-value resource utilization.
Key words:  secondary aluminum ash sintering slag grinding fine powder    modified magnesium oxysulfide cement-based material    workability    mechanical property    heavy metal leaching    hydration mechanism
出版日期:  2025-08-10      发布日期:  2025-08-13
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51978346);浙江省大学生科技创新活动计划项目(2023R405087)
通讯作者:  巴明芳,工学博士,教授,博士研究生导师。主要从事高性能水泥材料及混凝土结构耐久性方面的研究工作。bamingfang@nbu.edu.cn   
作者简介:  崔嘉铭,宁波大学土木工程与地理环境学院硕士研究生,主要从事绿色高性能水泥材料方面的研究。
引用本文:    
崔嘉铭, 马红瑞, 马哲洋, 纪璐鑫, 王胜, 巴明芳. 二次铝灰烧结渣料磨细粉对改性硫氧镁水泥基材料性能的影响及机理研究[J]. 材料导报, 2025, 39(15): 24040219-9.
CUI Jiaming, MA Hongrui, MA Zheyang, JI Luxin, WANG Sheng, BA Mingfang. Study on the Effect and Mechanism of Secondary Aluminum Ash Sintering Slag Grinding Fine Powder on the Properties of Modified Magnesium Sulfide Cement-based Materials. Materials Reports, 2025, 39(15): 24040219-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040219  或          https://www.mater-rep.com/CN/Y2025/V39/I15/24040219
1 Qin L, Gao X J, Chen T F. Journal of Cleaner Production, 2018, 191, 220.
2 Li Q Y. The effect of mineral admixtures and carbonation curing on the performance of magnesium oxysulfide cement. Master's Thesis, Harbin Institute of Technology, China, 2019 (in Chinese).
李奇岩. 矿物混合材和碳化养护对硫氧镁水泥性能的影响. 硕士学位论文, 哈尔滨工业大学, 2019.
3 Coppola L, Coffetti D, Crotti E, et al. Journal of Cleaner Production, 2019, 220, 475.
4 Guan Y, Hu Z Q, Zhang Z H, et al. Cement and Concrete Research, 2021, 143, 106387.
5 Jiang G, Cui K, Dong T, et al. Petroleum Science and Technology, 2021, 39(7-8), 216.
6 Gomes C, Camarini G. Key Engineering Materials, 2014, 600, 308.
7 Wang L. Research on modification technology of magnesium oxysulfide cement. Master's Thesis, Chongqing University, China, 2016 (in Chinese).
王磊. 硫氧镁水泥改性技术研究. 硕士学位论文, 重庆大学, 2016.
8 Wu C Y, Yu H F, Dong J M, et al. ACI Materials Journal, 2014, 111(3), 291.
9 Wu C Y. The basic theory of basic magnesium oxysulfide cement and its application technology in civil engineering. Master's Thesis, Graduate School of the Chinese Academy of Sciences (Qinghai Salt Lake Institute), China, 2014 (in Chinese).
吴成友. 碱式硫氧镁水泥的基本理论及其在土木工程中的应用技术研究. 硕士学位论文, 中国科学院研究生院(青海盐湖研究所), 2014.
10 Wang J F, Ba M F, Yang Y Y, et al. Materials Reports, 2014, 28(S2), 303(in Chinese).
王婕斐, 巴明芳, 杨莹莹, 等. 材料导报, 2014, 28(S2), 303.
11 Meshram A, Singh K K. Resources Conservation and Recycling, 2018, 130, 95.
12 Zhong W. Research on the production of aluminate cement CA50 by replacing part of high alumina bauxite with aluminum ash. Master's Thesis, Southwest University of Science and Technology, China, 2018 (in Chinese).
钟文.铝灰替代部分高铝矾土生产铝酸盐水泥CA50的研究. 硕士学位论文, 西南科技大学, 2014.
13 Lou B J, Shen H L, Liu B, et al. Construction and Building Materials, 2023, 409(15), 133989.
14 Gireesh M, Sujay R N, Sreedhara B M, et al. Resource-Efficient Techno-logies, 2016, 2(2), 68.
15 Zhang J J, Marta F S, Deng J X, et al. Journal of Materials Research and Technology, 2023, 26, 5638.
16 Zhang J J, Liu B, Zhao S Z, et al. Construction and Building Materials, 2020, 262(30), 120781.
17 Cui J M, Jiang Y H, Huang F J, et al. New Building Materials, 2022, 49(9), 27 (in Chinese).
崔嘉铭, 蒋元海, 黄发军, 等. 新型建筑材料, 2022, 49(9), 27.
18 Lahalle H, Coumes C. C. D, Mesbah A, et al. Cement and Concrete Research, 2016, 87, 77.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed