Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24120206-7    https://doi.org/10.11896/cldb.24120206
  金属与金属基复合材料 |
锆合金均匀腐蚀模型研究进展
彭丹珉, 孙志鹏, 胡述伟, 周明扬, 高阳, 邱玺, 张坤, 李垣明*
中国核动力研究设计院核反应堆技术全国重点实验室,成都 610213
The Research Progress of Zirconium Alloy Uniform Corrosion Mechanism Models
PENG Danmin, SUN Zhipeng, HU Shuwei, ZHOU Mingyang, GAO Yang, QIU Xi, ZHANG Kun, LI Yuanming*
National Key Laboratory of Nuclear Reactor Technology, Nuclear Power Institute of China, Chengdu 610213, China
下载:  全 文 ( PDF ) ( 5710KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锆合金因其较低的热中子吸收截面、良好的耐腐蚀性能以及力学性能,被广泛用作压水堆燃料包壳等关键结构。锆合金的均匀腐蚀行为是制约核电燃料包壳服役寿命的关键因素之一。因此,建立锆合金的均匀腐蚀模型对包壳材料腐蚀行为分析和寿命预测至关重要。已有锆合金均匀腐蚀模型主要分为两大类:基于实验数据拟合建立的经验模型和基于腐蚀微观机制建立的机理模型。本文总结了已有锆合金均匀腐蚀的经验模型和机理模型的研究进展,分析了已有模型的优势和不足,并提出了模型开发的改进方向,有利于后续自主化新型锆合金长周期均匀腐蚀模型的构建和优化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭丹珉
孙志鹏
胡述伟
周明扬
高阳
邱玺
张坤
李垣明
关键词:  锆合金  包壳材料  腐蚀模型  氧化动力学    
Abstract: Zirconium (Zr) alloys are widely used as key structural materials for pressurized water reactor fuel cladding due to their low thermal neutron absorption cross section, excellent corrosion resistance and mechanical properties. The uniform corrosion behavior of Zr alloys is one of the most critical factors limiting the service life of nuclear power fuel cladding. Therefore, establishing uniform corrosion models for Zr alloys is crucial for analyzing the corrosion behavior and predicting the service life of cladding materials. The existing uniform corrosion models for Zr alloys can be mainly divided into empirical models based on experimental data fitting and mechanism models based on corrosion micro mechanisms. This paper summarizes the research progress of current empirical and mechanistic models for uniform corrosion of Zr alloys, analyzes the advantages and disadvantages of the models, and proposes improvement directions for model development, beneficial for the construction and optimization of independent long-term uniform corrosion models for advanced Zr alloys.
Key words:  zirconium alloy    cladding material    corrosion model    oxidation kinetics
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TL34  
  TG146  
基金资助: 国家科技部重点研发计划(2022YFB1902402);国家自然科学基金(12205285)
通讯作者:  *李垣明,博士,中国核动力研究设计院正高级工程师、博士研究生导师,长期从事先进核能燃料组件研发及性能评价工作。liyuanming@npic.ac.cn   
作者简介:  彭丹珉,中国核动力研究设计院助理工程师。目前主要研究领域为燃料材料设计、材料低尺度模拟。
引用本文:    
彭丹珉, 孙志鹏, 胡述伟, 周明扬, 高阳, 邱玺, 张坤, 李垣明. 锆合金均匀腐蚀模型研究进展[J]. 材料导报, 2026, 40(2): 24120206-7.
PENG Danmin, SUN Zhipeng, HU Shuwei, ZHOU Mingyang, GAO Yang, QIU Xi, ZHANG Kun, LI Yuanming. The Research Progress of Zirconium Alloy Uniform Corrosion Mechanism Models. Materials Reports, 2026, 40(2): 24120206-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120206  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24120206
1 Wang K S, Ma L S, Yue Q, et al. Metal World, 2014(5), 38 (in Chinese).
王快社, 马林生, 岳强, 等. 金属世界, 2014(5), 38.
2 Cox B. Journal of Nuclear Materials, 2005, 336, 331.
3 Hillner E, Franklin D G, Smee J D. Journal of Nuclear Materials, 2000, 278(2-3), 334.
4 Motta A T, Gomes da Silva M J, Yilmazbayhan A, et al. In: Zirconium in the Nuclear Industry, 15th International Symposium, ASTM STP 1505, 2009, pp.486.
5 Motta A T, Couet A, Comstock R J. Annual Review of Materials Research, 2015, 45(1), 311.
6 Shi M H. Effects of nanocrystallzation of the corrosion properties of zirconium alloys. Master’s Thesis, Guangxi University, China, 2007(in Chinese).
石明华. 纳米级锆合金耐腐蚀性能研究. 硕士学位论文, 广西大学, 2007.
7 Liu C W. Investigation of irradiation behavior and corrosion properties of the N36 Zr alloy developed by China. Master’s Thesis, Xiamen University, China, 2016(in Chinese).
刘臣伟. 国产N36锆合金辐照行为及腐蚀性能研究. 硕士学位论文, 厦门大学, 2016.
8 Nagase F, Otomo T, Uetsuka H. Journal of Nuclear Science and Technology, 2003, 40(4), 213.
9 Kim H, Kim J H, Moon J Y, et al. Journal of Materials Science and Technology, 2010, 26(9), 827.
10 Garde A M Pan G, Atwood A R. In: Journal of ASTM International. Hyderabad Andhra Predesh. India, 2015.
11 Liu P, Du Z Z, Ma L S, et al. Materials Heat Treatment, 2011, 40(22), 22(in Chinese).
刘鹏, 杜忠泽, 马林生, 等. 材料热处理技术, 2011, 40(22), 22.
12 Zhang K, Guo X K, Liu Z H, et al. Nuclear Power Engineering, 2015, 36(S2), 93(in Chinese).
张坤, 郭兴坤, 刘振海, 等. 核动力工程, 2015, 36(S2), 93.
13 Miao Yifei, Jiao Yongjun, Zhang Kun, et al. Atomic Energy Science and Technology, 2018, 2(2), 290(in Chinese).
苗一非, 焦拥军, 张坤, 等. 原子能科学技术, 2018, 2(2), 290.
14 Xing Shuo, Zhang Kun, Chen Ping, et al. Atomic Energy Science and Technology, 2021, 55(11), 2048(in Chinese).
邢硕, 张坤, 陈平, 等. 原子能科学技术, 2021, 55(11), 2048.
15 Cox B, Kntsky V G, Lemaignan C, et al. In: International atomic energy agency. Vienna, Austria, 1998.
16 Cox B. In: Proc NATO ADV Research Workshop on Modelling Aqueous Corrosion. RNEC, Manadon, Plymouth, 1993, pp.183.
17 Cox B. In:Proc IAEA Tech Comm Mtg on the influence of water chemistry on fuel cladding behaviour, IAEA-TECDOC-927 Vienna, 1997, pp.91.
18 Motta A T, Lefebvre F, Lemaignan C. In:Zirconium in the nuclear industry 9th Int Symp, ASTM-STP-1132, 1991, pp.718.
19 Garden A M. In: Zirconium in the nuclear industry, 9th Int Symp, ASTM-STP-1132, 1991, pp.566.
20 Garzarolli F, Jorde D, Manzel R, et al. In: US Report NP-1472, electric power research Inst. Palo Alto, CA, 1980.
21 Billot P, Giordano A. In: Zirconium in the Nuclear Industry 9th Int Symp, ASTM-STP-1132. Kobe, 334, 1992, pp.539.
22 Billot P. In: Zirconium in the Nuclear Industry 8th Int Symp ASTM-STP-1023, 1990, pp.173.
23 Vanswam L, Shann S H. In: Zirconium in the Nuclear Industry, 9th Int Symp, ASTM-STP-1132, 1992.
24 Matpro. In: A handbook of materials properties for use in the analysis of light water reactor fuel rod behaviour. US Report TREE-NUREG-1180, Nuclear Regulatory Commission. Wash, DC, 1978.
25 Garzarolli F, Jung W, Schoenfeld H, et al. In: Waterside corrosion of Zircaloy fuel rods. U S Rep EPRI-NP-2789, Electric Power Research Institute. 1982.
26 Polley M V, Evans H E. In: US report TR-102826, Electric Power Research Institute. Palo Alto, CA, 1993.
27 Sabol G P, Correal-pulver O A, Weiner R A, et al. In: Paper presented at ANS 1994Int Topical Mtg on LWR Performance, April 17-21. West Palm Beach, Florida, 1994.
28 Polley M V. In: US report TR-105662, Electric Power Research Institute. Palo Alto, CA, 1995.
29 Pecheur D, Giordano A, Picard E, et al. In: 1997 proc technical committee mtg. on influence of water chemistry on fuel cladding behaviour. Rez, Czech Republic, 1997, pp.111.
30 Billot P, Beslu P, Robin J C. In: Fuel for the 90’s, (Int Topical Mtg on LWR Fuel Performance). Avignon, France, 1991, pp.757.
31 Billot P, Robin J C, Giordano A, et al. In: American society for testing and materials. W Conshohocken. 1994, pp. 351.
32 Cheng B, Gilmore P, Klepfer H H. In: Zirconium in the Nuclear Industry, 11th Int Symp, Garmisch-Partenkirchen, ASTM-STP-1295. Germany, 1996, pp.137.
33 Couet A, Mottaa A T, Ambard A. Corrosion Science, 2015, 100, 73.
34 Chao C Y, Lin L F, Macdonald D D. Journal of the Electrochemical Society, 1981, 128, 1187.
35 Pauporte T, Finne J. Journal of Applied Electrochemistry, 2006, 2006(36), 33.
36 Yu Z F, Kautz E, Zhang H L, et al. Acta Materialia, 2023, 253, 118956.
37 Couet A, Mottaa A T, Comstock R J. In: B. Comstock (Ed. ). 17th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1543. Hyderabad, India, 2013, pp.479.
38 Dykhuis Andrew F, Short Michael P. Corrosion Science, 2019, 146, 179.
39 Amma K, Appolaire B, Cailletaud G, et al. Computational Materials Science, 2009, 45(3), 800.
40 Gaston D R, Permann C J, Peterson J W, et al. Annals of Nuclear Energy, 2015, 84, 45.
41 Garzarolli F, Jung W, Shoenfeld H, et al. In: Union, AG and combustion engineering, Inc, Electric Power Research Institute. Palo Alto, CA, 1982.
42 Balluffi R W, Allen S M, Carter W C. Kinetics of materials, John Wiley & Sons, Inc., 2005.
43 Lin C, Ruan H, Shi S. npj Materials Degradation, 2020, 4, 22.
44 Ammar K, Appolaire B, Cailletaud G, et al. Materials Science, 2009, 45, 800.
45 Loeffel K, Anand L. International Journal of Plasticity, 2011, 27, 1409.
46 Beremin F M, Pineau A, Mudry F, et al. Metallurgical Transactions A, 1983, 14A(11), 2277.
47 Johnson A B. Revs on coatings and corrosion 4 (Ed Yahalom J) freund. Tel Aviv, 1975, pp.299.
48 Aryanfar A, Iii W G, Marian J. Corrosion Science, 2019, 158, 108058.
49 Zinkle S J, Was G S. Acta Materialia, 2013, 61(3), 735.
[1] 林家茂, 姚美意, 陈哲斌, 徐诗彤, 胡丽娟. 生物医用锆基合金的研究进展[J]. 材料导报, 2025, 39(5): 24020141-10.
[2] 陈天旭, 廖京京, 邱绍宇. 反应堆水化学对锆合金耐腐蚀性能影响研究现状[J]. 材料导报, 2025, 39(15): 24050203-7.
[3] 陈晓平, 陶贤成, 鲍听, 赵宁宁, 楼玉民, 岳建岭. GH 783合金和NiCoCrAlYTa涂层的抗氧化性能研究[J]. 材料导报, 2025, 39(14): 24060116-7.
[4] 付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
[5] 全琪炜, 刘向兵, 赵文增, 吴奕初, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 尹建. Xe离子辐照后Zr-4和Zr-1Nb合金的力学和耐腐蚀性能研究[J]. 材料导报, 2024, 38(18): 23020010-5.
[6] 郑勇, 邱绍宇, 魏连峰, 杨灿湘, 王宇, 田大容, 姚力夫. 高压条件下锆及其合金ω相变研究进展[J]. 材料导报, 2024, 38(17): 23020025-7.
[7] 王亚恒, 左家栋, 王亚强, 张金钰, 吴凯, 刘刚, 孙军. 事故容错锆包壳表面FeCrAl合金涂层的研究进展[J]. 材料导报, 2024, 38(12): 22110325-11.
[8] 全琪炜, 刘向兵, 徐超亮, 张晏玮, 李远飞, 钱王洁, 贾文清, 吴奕初, 赵文增. 辐照后锆合金腐蚀与第二相非晶化研究概况[J]. 材料导报, 2022, 36(Z1): 21010255-6.
[9] 杨健乔, 恽迪, 刘俊凯. 铬涂层锆合金耐事故燃料包壳材料事故工况行为研究进展[J]. 材料导报, 2022, 36(1): 20080283-12.
[10] 王鹏, 张卫刚, 孙旭东. 锆在硫酸提浓工艺中的腐蚀研究[J]. 材料导报, 2020, 34(Z1): 385-389.
[11] 唐伍实秋, 王斌, 江明晏, 周椤, 叶洋呈. 锆合金表面氟化物-磷酸盐预镀层的制备及对化学镀层性能的影响[J]. 材料导报, 2020, 34(Z1): 390-394.
[12] 杨振飞, 史鹏, 敖冰云. 锆合金中的氢化物脱附行为研究进展[J]. 材料导报, 2020, 34(5): 5102-5108.
[13] 胡号旗,许赪,杨丽景,张恒华,宋振纶. 高强高导铜铬锆合金的最新研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 453-460.
[14] 程亮, 张鹏程. 典型事故容错轻水堆燃料包壳候选材料SiCf/SiC复合材料和Mo合金的研究进展[J]. 材料导报, 2018, 32(13): 2161-2166.
[15] 周惦武,何蓉,刘金水,彭平. Ge、Si元素对ZrO2和Zr(Fe,Cr)2能量与电子结构的影响*[J]. 材料导报编辑部, 2017, 31(22): 146-152.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed