Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 453-460    https://doi.org/10.11896/j.issn.1005-023X.2018.03.016
     材料综述 |
高强高导铜铬锆合金的最新研究进展
胡号旗1,2,许赪2,杨丽景2,张恒华1,宋振纶2
1 上海大学材料科学与工程学院,上海 200072
2 中国科学院海洋新材料与应用技术重点实验室,浙江省海洋材料与防护技术重点实验室,中国科学院宁波材料技术与工程研究所,宁波 315201
Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy
Haoqi HU1,2,Cheng XU2,Lijing YANG2,Henghua ZHANG1,Zhenlun SONG2
1 School of Materials Science and Engineering, Shanghai University, Shanghai 200072
2 Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies,Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
下载:  全 文 ( PDF ) ( 3239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

随着社会发展,对在电机制造、交通运输、电力、电子等领域应用的铜合金的导电性和强度提出了更高要求,铜铬锆合金是满足这些要求的理想材料之一。针对近年来铜铬锆合金的研究热点,综述了铜铬锆合金合金化设计以及加工工艺方面的研究进展,详细总结了目前对铜铬锆合金研究最多的几种加工工艺及其对合金组织和性能的影响,并在此基础上对高强高导铜铬锆合金的热点研究方向进行了分析和展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡号旗
许赪
杨丽景
张恒华
宋振纶
关键词:  铜铬锆合金  高强  高导    
Abstract: 

With the development of the transportation, electric power, electronics and other fields,higher requirements have been put forward for copper alloys in strength and conductivity. The CuCrZr alloy is one of the ideal materials to meet these requirements. This paper summarizes the progress of the research on the alloying, designing and processing of CuCrZr alloy with the focus on the recent hot topics of CuCrZr alloys, discusses the influence of the processing methods presently under investigation on the microstructure and properties of CuCrZr alloy. The prospective research topics of the CuCrZr alloy have been also proposed.

Key words:  CuCrZr alloy    high strength    high conductivity
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TG146.1+1  
基金资助: 宁波市工业重大攻关项目(2017B10001)
作者简介:  胡号旗:男,1992年生,硕士研究生,主要从事铜合金材料的研究 E-mail: huhaoqi@nimte.ac.cn|宋振纶:通信作者,男,研究员,主要从事金属材料及其表面技术的研究 E-mail: songzhenlun@nimte.ac.cn
引用本文:    
胡号旗,许赪,杨丽景,张恒华,宋振纶. 高强高导铜铬锆合金的最新研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 453-460.
Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy. Materials Reports, 2018, 32(3): 453-460.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.016  或          https://www.mater-rep.com/CN/Y2018/V32/I3/453
图1  不同系列的典型铜合金的极限抗拉强度与电导性能[1,2,3,4,5,6]
图2  CuCrZr合金、CuCr合金、CuZr合金和一些商业合金的强度与导电性的关系[12,13,14,15,16,17,18,19]
图3  Cu-1Cr-0.1Zr合金析出相的3D重建图像及相应延箭头方向的元素分布(厚度1 nm)[25]
图4  粉末冶金法制备的Cu-1Cr-0.65Zr合金在450 ℃时效处理4 h:(a)明场像和SAED照片;(b)析出相的高分辨照片;(c)析出相的EDX分析[28]
Processing
methods
Alloys Condition σb/MPa Conductivity
%IACS
Vacuum
induction
melting
Cu-(0.3—1)Cr-(0.03—0.2)Zr-X
(X=RE,Ti,Mg,etc.)
Solution-deformation-aging [13-14,24,32] 425—590 75—83
Solution-aging[33,34] 350—450 61—85
Secondary aging[35,36,37,38] 480—1 120 67—90
Solution-SPD-aging[19,39-41] 700—1 750 26—85
Powder
metallurgy
Cu-(0.5—1.5)Cr-(0.05—0.5)Zr-Ti Aging[42,43] 400—450 78—85
Deformation-aging[44] 600 62
Non-vacuum
melting
Cu-(0.3—0.8)Cr-(0.15—0.45)Zr-X
(X=RE,Mg)
Solution-deformation-aging[45,46,47] 450—540 78—85
Rapid
solidification
Cu-0.3Cr-0.15Zr-0.05Mg Aging[48] 378 70
表1  不同工艺制备CuCrZr合金的性能
Defect Resistance increment
μΩ·cm
Vacancy (1%,atom fraction) 1.6
Solution atom (1%,atom fraction) 2.5
Grain boundary/(cm2/cm3) 31.2×10-7
Dislocation/(cm/cm3) 1.0×10-7
表2  不同晶格缺陷对Cu及Cu合金的电阻率的影响[49,50]
图5  Cu-0.81Cr-0.12Zr-0.05La-0.05Y合金60%冷轧773 K时效60 min的明场像与衍射花样[22]
图6  Cu-0.8Cr-0.09Zr合金硬度和导电率随时效时间的变化(时效温度:450 ℃)
图7  不同状态的Cu-0.8Cr-0.09Zr合金的组织和衍射花样照片:(a,b)固溶态;(c,d)固溶时效态
图8  Cu-0.8Cr-0.08Zr经8道次ECAP在425 ℃时效240 min的TEM照片[57]
图9  Cu-15Cr-0.24Zr原位复合材料的不同状态的微观形貌:(a)铸态;(b)ε=2.41轴向;(c)ε=2.41径向;(d)ε=6.44轴向[62]
1 Yin Zhimin, Zhang Shenglong . Hotspots and development trends of high strength and high conductivity copper alloy research[J]. Mi-ning and Metallurgical Engineering, 2002,22(2):1(in Chinese).
1 尹志民, 张生龙 . 高强高导铜合金研究热点及发展趋势[J]. 矿冶工程, 2002,22(2):1.
2 Martienssen W, Warlimont H . Springer handbook of condensed mater and materials data[M]. Germany:Springer Berlin Heidelberg, 2005: 296.
3 Zhang Guojun, Su Juanhua . Finite element analysis of bending springback of copper alloy material for lead frame[J]. Hot Working Technology, 2011,40(7):91(in Chinese).
3 张国军, 苏娟华 . 引线框架用铜合金材料弯曲回弹有限元分析[J]. 热加工工艺, 2011,40(7):91.
4 Dai J Y, Yin Z M, Song L P , et al. Microstructure and pro-perties evolution of Cu-2.5Fe-0.03P alloy under different treatment conditions[J]. The Chinese Journal of Nonferrous Metals, 2009,19(11):1969(in Chinese).
4 戴姣燕, 尹志民, 宋练鹏 , 等. 不同处理状态下Cu-2.5Fe-0.03P合金的组织与性能演变[J]. 中国有色金属学报, 2009,19(11):1969.
5 Ghosh G, Miyake J, Fine M E . The systems-based design of high-strength, high-conductivity alloys[J]. JOM, 1997,49(3):56.
6 Gholami M, Vesely J, Altenberger I , et al. Influence of grain size and precipitation hardening on high cycle fatigue performance of CuNiSi alloys[J]. Materials Science and Engineering:A, 2017,684:524.
7 郭青蔚, 王桂生, 郭庚辰 . 常用有色金属二元合金相图集[M]. 北京: 化学工业出版社, 2010: 131.
8 Zhou Zhiming, Wang Yaping, Xia Hua , et al. Research development of manufacture processing of Cu-Cr alloy[J]. Materials Review, 2008,22(3):44(in Chinese).
8 周志明, 王亚平, 夏华 , 等. CuCr合金制备技术的研究进展[J]. 材料导报, 2008,22(3):44.
9 Su J, Dong Q, Liu P , et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J]. Materials Science and Engineering:A, 2005,392(1):422.
10 Naotsugu I . Behavior of precipitation and recrystallization affect upon texture of CuCrZr alloy[J]. Journal of the Japan Copper and Brass Research Association, 1993,32:115.
11 Pang Y, Xia C, Wang M , et al. Effects of Zr and (Ni, Si) additions on properties and microstructure of Cu-Cr alloy[J]. Journal of Alloys and Compounds, 2014,582:786.
12 Muramatsu N, Kimura H, Inoue A . Microstructures and mechanical properties of highly electrically conductive Cu-0.5, Cu-1 and Cu-2at%Zr alloy wires[J]. Materials Transactions, 2013,54(2):176.
13 Muramatsu N, Goto T . Microstructures and mechanical and electrical properties of hypoeutectic Cu-1, Cu-3 and Cu-5at% Zr alloy wires preprocessed by spark plasma sintering[J]. Materials Transactions, 2013,54(7):1213.
14 Islamgaliev R K, Nesterov K M, Bourgon J , et al. Nanostructured Cu-Cr alloy with high strength and electrical conductivity[J]. Journal of Applied Physics, 2014,115(19):194.
15 Dobatkin S V, Gubicza J, Shangina D V , et al. High strength and good electrical conductivity in Cu-Cr alloys processed by severe plastic deformation[J]. Materials Letters, 2015,153:5.
16 Liu Q, Zhang X, Ge Y , et al. Effect of processing and heat treatment on behavior of Cu-Cr-Zr alloys to railway contact wire[J]. Metallurgical and Materials Transactions A, 2006,37(11):3233.
17 Su J, Liu P, Li H , et al. Phase transformation in Cu-Cr-Zr-Mg alloy[J]. Materials Letters, 2007,61(27):4963.
18 Hou Dongjian, Wu Lei, Gao Dawei , et al. Effect of magnesium silicon composite microalloying on high strength and high conductivity Cu-Cr-Zr alloy aging process[J]. Heat Treatment of Metals, 2016,41(10):102(in Chinese).
18 侯东健, 武磊, 高大伟 , 等. 镁硅复合微合金化对高强高导铜铬锆合金时效过程的影响[J]. 金属热处理, 2016,41(10):102.
19 Pan Z, Chen J, Li J . Microstructure and properties of rare earth-containing Cu-Cr-Zr alloy[J]. Transactions of Nonferrous Metals Society of China, 2015,25(4):1206.
20 Zhang Y, Huili S, Volinsky A A , et al. Hot deformation and dynamic recrystallization behavior of the Cu-Cr-Zr-Y alloy[J]. Journal of Materials Engineering and Performance, 2016,25(3):1150.
21 Zhang Y, Sun H, Volinsky A A , et al. Dynamic recrystallization behavior and processing map of the Cu-Cr-Zr-Nd alloy[J]. Springer Plus, 2016,5(1):1.
22 Saray O . Biaxial deformation behavior and formability of precipita-tion hardened ultra-fine grained (UFG) Cu-Cr-Zr alloy[J]. Materials Science and Engineering:A, 2016,656:120.
23 Verhoeven J D, Spitzig W A, Jones L L , et al. Development of deformation processed copper-refractory metal composite alloys[J]. Journal of Materials Engineering, 1990,12(2):127.
24 Hatakeyama M, Toyama T, Nagai Y , et al. Nanostructural evolution of Cr-rich precipitates in a Cu-Cr-Zr alloy during heat treatment studied by 3 dimensional atom probe[J]. Materials Transactions, 2008,49(3):518.
25 Chbihi A, Sauvage X, Blavette D . Atomic scale investigation of Cr precipitation in copper[J]. Acta Materialia, 2012,60(11):4575.
26 Sarin V K, Grant N J . Cu-Zr and Cu-Zr-Cr alloys produced from ra-pidly quenched powders[J]. Metallurgical Transactions, 1972,3(4):875.
27 Batawi E, Morris D G, Morris M A . Effect of small alloying additions on behaviour of rapidly solidified Cu-Cr alloys[J]. Materials Science and Technology, 1990,6(9):892.
28 Zhou J, Zhu D, Tang L , et al. Microstructure and properties of powder metallurgy Cu-1% Cr-0.65% Zr alloy prepared by hot pres-sing[J]. Vacuum, 2016,131:156.
29 Zhang Y, Volinsky A A, Tran H T , et al. Aging behavior and precipitates analysis of the Cu-Cr-Zr-Ce alloy[J]. Materials Science and Engineering:A, 2016,650:248.
30 Krishna S C, Rao G S, Jha A K , et al. Strengthening in high strength Cu-Cr-Zr-Ti alloy plates produced by hot rolling[J]. Mate-rials Science and Engineering:A, 2016,674:164.
31 Chen X H, Hou B, Wang Z D . Formation of an abnormal lamellar precipitate in Cu-Cr-Zr-Mg-Ce nanocomposite during solution treatments[J]. Materials Research Innovations, 2015,19(sup5):1333.
32 Li Si, Jiang Yexin, Li Zhou . Effect of thermomechanical treatment on Microstructure and mechanical properties of Cu-2.7Ti-0.15Mg-0.1Ce-0.1Zr alloy[J]. Journal of Heat Treatment, 2016,37(3):127(in Chinese).
32 李思, 姜业欣, 李周 . 形变热处理对Cu-2.7Ti-0.15Mg-0.1Ce-0.1Zr合金组织和性能的影响[J]. 材料热处理学报, 2016,37(3):127.
33 Cheng J Y, Yu F X, Shen B . Solute clusters and chemistry in a Cu-Cr-Zr-Mg alloy during the early stage of aging[J]. Materials Letters, 2014,115:201.
34 Cheng J Y, Shen B, Yu F X . Precipitation in a Cu-Cr-Zr-Mg alloy during aging[J]. Materials Characterization, 2013,81:68.
35 Liu Y, Wang D J , Tian B H. Aging behavior of Cu-Cr-Zr-Y alloy[J].Advanced Materials Research, 2011, 311- 313:2005.
36 Zhou Haitao, Zhong Jianwei, Zhou Xiao , et al. Effect of multi-step thermomechanical treatments on microstructure and properties of Cu-Cr-Zr alloy[J].Journal of Heat Treatment,2009(3):141(in Chinese).
36 周海涛, 钟建伟, 周啸 , 等. 多级形变时效对Cu-Cr-Zr合金组织和性能的影响[J].材料热处理学报,2009(3):141.
37 Xie H F, Peng L J, Wang Z H , et al. Effects of two-stage solution heat treatments on microstructures and properties of Cu-Cr-Zr alloy[J].Applied Mechanics and Materials, 2013, 423- 426:230.
38 Lin G B, Wang Z D, Zhang M K , et al. Heat treatment method for making high strength and conductivity Cu-Cr-Zr alloy[J]. Materials Science and Technology, 2011,27(5):966.
39 Shangina D V, Bochvar N R, Gorshenkov M V , et al. Influence of microalloying with zirconium on the structure and properties of Cu-Cr alloy after high pressure torsion[J]. Materials Science and Engineering:A, 2016,650:63.
40 Shakhova I, Yanushkevich Z, Fedorova I , et al. Grain refinement in a Cu-Cr-Zr alloy during multidirectional forging[J]. Materials Science and Engineering:A, 2014,606:380.
41 Sun L X, Tao N R, Lu K . A high strength and high electrical conductivity bulk CuCrZr alloy with nanotwins[J]. Scripta Materialia, 2015,99:73.
42 Krishna S C, Rao G S, Jha A K , et al. Strengthening in high strength Cu-Cr-Zr-Ti alloy plates produced by hot rolling[J]. Mate-rials Science and Engineering:A, 2016,674:164.
43 Ipek M. The effect of aging parameters on properties of PM Cu-Cr-Zr alloy [C]∥Metal 2014: 23rd International Conference on Metallurgy and Materials.Brno,Czech Republic, 2014.
44 Qin Y Q, Wu Y C, Wang Y , et al. Preparation of Cu-Cr-Zr/AlN nanocomposites and their mechanical and conductive properties[J]. Advanced Materials Research, 2011,239:2756.
45 Tao Yeqing, Liu Ping , et al. Study on the properties of nonvacuum melting Cu-Cr-Zr alloy[J].China Foundry,2010(10):1020(in Chinese).
45 陶业卿, 刘平 , 等. 非真空熔炼Cu-Cr-Zr合金的性能研究[J].铸造,2010(10):1020.
46 Qin Y Q, Wu Y C, Wang Y, et al. Preparation of Cu-Cr-Zr/AlN nanocomposites and their mechanical and conductive properties[J].Advanced Materials Research, 2011, 239-242:2756.
47 Kermajani M, Raygan S, Hanayi K , et al. Influence of thermomechanical treatment on microstructure and properties of electroslag remelted Cu-Cr-Zr alloy[J]. Materials & Design, 2013,51:688.
48 Tenwick M J, Davies H A . Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering, 1988,98:543.
49 Tavassoli A A F . Materials design data for fusion reactors[J]. Journal of Nuclear Materials, 1998,258:85.
50 Huaqing L I , Shuisheng X I E, Pengyue W U, et al. Study on improvement of conductivity of Cu-Cr-Zr alloys[J]. Rare Metals, 2007,26(2):124.
51 Zhu Chengcheng, Ma Aibin , et al. Research status and development trend of high strength and high conductivity copper alloy[J]. Hot Working Technology, 2013,42(2):15(in Chinese).
51 朱承程, 马爱斌 , 等. 高强高导铜合金的研究现状与发展趋势[J]. 热加工工艺, 2013,42(2):15.
52 Zhang X P, Yang B, Li M M , et al. Anti-burning loss of Cu-Cr-Zr alloys melted under non-vacuum conditions[J].Nonferrous Metals Science & Engineering,2015(3):36(in Chinese).
52 张小平, 杨斌, 李明茂 , 等. 非真空熔铸CuCrZr合金的抗烧损研究[J].有色金属科学与工程,2015(3):36.
53 Ding Zongye, Jia Shuguo, Guo Wangwan , et al. Thermal deformation behavior and critical conditions of dynamic recrystallization of Cu-Cr-Zr alloy in non-vacuum casting[J].Rare Metal Materials and Engineering,2014(2):408(in Chinese).
53 丁宗业, 贾淑果, 郭望望 , 等. 非真空熔铸Cu-Cr-Zr合金的热变形行为及动态再结晶临界条件[J].稀有金属材料与工程,2014(2):408.
54 Su Juanhua, Li Hejun , et al. Effects of solution aging and rapid solidification aging on aging properties of Cu-Cr-Zr-Mg alloy[J]. Journal of Functional Materials, 2004,35(4):439(in Chinese).
54 苏娟华, 李贺军 , 等. 固溶时效和快速凝固时效对Cu-Cr-Zr-Mg合金时效性能的影响[J]. 功能材料, 2004,35(4):439.
55 Wang K, Liu K F, Zhang J B . Microstructure and properties of aging Cu-Cr-Zr alloy[J]. Rare Metals, 2014,33(2):134.
56 Mishnev R, Shakhova I, Belyakov A , et al. Deformation microstructures, strengthening mechanisms, and electrical conductivity in a Cu-Cr-Zr alloy[J]. Materials Science and Engineering:A, 2015,629:29.
57 Purcek G, Yanar H, Demirtas M , et al. Optimization of strength, ductility and electrical conductivity of Cu-Cr-Zr alloy by combining multi-route ECAP and aging[J]. Materials Science and Engineering:A, 2016,649:114.
58 Abib K, Azzeddine H, Tirsatine K , et al. Thermal stability of Cu-Cr-Zr alloy processed by equal-channel angular pressing[J]. Mate-rials Characterization, 2016,118:527.
59 Zhilyaev A P, Shakhova I, Morozova A , et al. Grain refinement kinetics and strengthening mechanisms in Cu-0.3Cr-0.5Zr alloy subjected to intense plastic deformation[J]. Materials Science and Enginee-ring A, 2016,654:131.
60 Abib K , Balanos J A M, Alili B, et al. On the microstructure and texture of Cu-Cr-Zr alloy after severe plastic deformation by ECAP[J]. Materials Characterization, 2016,112:252.
61 Bi L , et al. Effect of Zr addition on Cr fibres and properties of Cu-15Cr in-situ composites[J]. Transactions of Materials and Heat Treatment, 2012,33:14.
62 Jia Shuguo, Liu Ping, Song Kexing , et al. Microstructure and pro-perties of Cu-Cr-Zr in situ composite[J]. The Chinese Journal of Nonferrous Metals, 2010,20(7):1334(in Chinese).
62 贾淑果, 刘平, 宋克兴 , 等. Cu-Cr-Zr原位复合材料的组织与性能[J]. 中国有色金属学报, 2010,20(7):1334.
63 Uddin S M, Mahmud T, Wolf C , et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J]. Composites Science and Technology, 2010,70(16):2253.
64 Cheng Jianyi, Wang Mingpu, Zhong Weijia , et al. The microstructure and properties of the internal oxidation of Cu-Al2O3 alloy[J]. Journal of Heat Treatment, 2003,24(1):23(in Chinese).
64 程建奕, 汪明朴, 钟卫佳 , 等. 内氧化法制备的Cu-Al2O3合金的显微组织与性能[J]. 材料热处理学报, 2003,24(1):23.
65 Ichikawa K, Achikita M . Electric conductivity and mechanical pro-perties of carbide dispersion-strengthened copper prepared by compocasting[J]. Materials Transactions,JIM, 1993,34(8):718.
66 Sheikh M, Mahmud T, Wolf C , et al. Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J]. Compo-sites Science and Technology, 2010,70(16):2253.
67 Zhang S, Li R, Kang H , et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and interme-diate aging treatment[J]. Materials Science and Engineering A, 2017,680:108.
68 Wang W, Li R, Zou C , et al. Effect of direct current pulses on mechanical and electrical properties of aged Cu-Cr-Zr alloys[J]. Materials & Design, 2016,92:135.
69 Li Rengeng, Zhang Shaojian, Kang Huijun , et al. Microstructure and texture evolution in the cryorolled CuZr alloy[J]. Journal of Alloys and Compounds, 2017,693:592.
[1] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[2] 马锐, 金圣楠, 龙柱, 朱瑞丰, 孙昌. 高性能内燃机用滤纸的制备及其对性能的影响[J]. 材料导报, 2024, 38(6): 22050334-6.
[3] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[4] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[5] 朋改非, 张贵, 左雪宇, 丁宏, 陈喜旺, 王海迪, 刘新建. 掺氢氧化钙对超高强混凝土力学性能影响的机理[J]. 材料导报, 2024, 38(3): 22060068-6.
[6] 张若楠, 韦朋余, 王珂, 曾庆波, 王连, 宋培龙. 海水环境下船用高强钢腐蚀疲劳损伤行为研究[J]. 材料导报, 2024, 38(23): 23090176-6.
[7] 崔涛涛, 宁宝宽, 郜殿伟, 夏旭东. 混杂纤维高强轻骨料混凝土单轴受压试验研究[J]. 材料导报, 2024, 38(2): 22040204-6.
[8] 樊立峰, 杨玉龙, 岳尔斌, 郭洪飞, 黄娇, 高军. 回火温度对2%Mn高强钢组织和性能的影响[J]. 材料导报, 2024, 38(15): 23080090-7.
[9] 张志强, 贺世伟, 李涵茜, 路学成, 张天刚, 王浩. 激光与CMT+P电弧复合增材工艺对2024铝合金气孔缺陷的影响规律[J]. 材料导报, 2024, 38(14): 23040011-9.
[10] 郑道友, 徐宇欣, 王苏煜, 王文权. 焊丝成分对超高强装甲钢焊接接头组织与性能的影响[J]. 材料导报, 2024, 38(10): 22080032-7.
[11] 周华生, 曹燕, 章小峰, 吴迪, 赵鑫磊, 邢梅, 林方敏, 江雅. 多尺度实验测试评价高强钢氢脆的研究进展[J]. 材料导报, 2024, 38(10): 22110194-11.
[12] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[13] 王鹏飞, 梁明, 贾佳林, 马小波, 徐晓燕. 脉冲磁体用高强高导Cu-Nb复合线材的研究进展[J]. 材料导报, 2023, 37(8): 21120237-8.
[14] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[15] 何松松, 焦楚杰, 欧旭. 高强抗冻透水混凝土的配合比设计与性能评估[J]. 材料导报, 2023, 37(21): 23070257-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed