Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (3): 443-452    https://doi.org/10.11896/j.issn.1005-023X.2018.03.015
     材料综述 |
高导热金刚石/铜复合材料界面修饰研究进展
张晓宇1,2,许旻1,曹生珠1,2
1 兰州空间技术物理研究所,兰州 730000
2 真空技术与物理国防科技重点实验室,兰州 730000
Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity
Xiaoyu ZHANG1,2,Min XU1,Shengzhu CAO1,2
1 Lanzhou Institute of Physics, Lanzhou 730000
2 Science and Technology on Vacuum Technology andPhysics Laboratory, Lanzhou 730000
下载:  全 文 ( PDF ) ( 2362KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

界面结合良好的金刚石/铜复合材料具有优异的热物理性能。通过各种手段修饰金刚石-铜界面能够充分发挥金刚石/铜复合材料的高导热潜力。综述了制备金刚石/铜复合材料时主要的两类界面修饰方法:金刚石表面预镀碳化物形成元素和对铜基体预合金化,并对这两类修饰手段的制备工艺和导热机制进行了简单评述。探讨了金刚石/铜复合材料制备及界面修饰领域目前存在的问题及发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓宇
许旻
曹生珠
关键词:  金刚石/铜复合材料  界面修饰  热导率  金属基复合材料    
Abstract: 

Diamond/copper composites with well-bonded interface have excellent thermophysical properties. Modified by various means, the diamond-copper interface can sufficiently enhance the thermal conductivity of diamond/copper composites. In this paper, recent progress about two main kinds of interfacial modification methods to prepare diamond/copper composite was reviewed, respectively as the preplating of carbide forming elements on diamond surface and pre-alloying of copper substrate. Preparation process and thermal conduction mechanism of these two modification methods were introduced briefly. The existing problems and development trend of diamond/copper composite preparation and interface modification were discussed.

Key words:  diamond/copper composites    interface modification    thermal conductivity    metal matrix composites
出版日期:  2018-02-10      发布日期:  2018-02-10
ZTFLH:  TB333  
作者简介:  张晓宇:男,1988年生,博士研究生,主要从事高导热复合材料的研究 E-mail: zhangxiaoyu31@163.com|许旻:通信作者,男,1971年生,研究员,主要从事航天热控材料的研究 E-mail: xmsurface@126.com
引用本文:    
张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity. Materials Reports, 2018, 32(3): 443-452.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.03.015  或          https://www.mater-rep.com/CN/Y2018/V32/I3/443
  
  
  
  
  
1 Yoshida K, Morigami H . Thermal properties of dia mond/copper composite material[J]. Microelectronics Reliability, 2004,44(2):303.
2 Yan G, Wei B R, Yang Haitao , et al. Research progress in thermal conductivity models of polymer based composite[J].Fiber Reinforced Plastics/Composites,2006(3):50(in Chinese).
2 闫刚, 魏伯荣, 杨海涛 , 等. 聚合物基复合材料导热模型及其研究进展[J].玻璃钢/复合材料,2006(3):50.
3 Wang X T, Zhang Y, Che Z F , et al. Review on the progress of diamond particles dispersed metal matrix composites with superior high thermal conductivity[J].Journal of Functional Materials,2014(7):7001(in Chinese).
3 王西涛, 张洋, 车子璠 , 等. 金刚石颗粒增强金属基高导热复合材料的研究进展[J].功能材料,2014(7):7001.
4 Hasselman D P H, Johnson L F . Effective thermal conductivity of composites with interfacial thermal barrier resistance[J]. Journal of Composite Materials, 1987,21(6):508.
5 Tavangar R, Molina J M, Weber L . Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast[J]. Scripta Materialia, 2007,56(5):357.
6 Kems J A, Colella N J, Makowiecki D, et al. Dymalloy: A compo-site substrate for high power density electronic components [C]∥Proceeding of the 1995 international symposium on microelectronics.Los Angeles,US, 1995.
7 Bai H, Ma N G, Lang J , et al. Effect of a new pretreatment on the microstructure and thermal conductivity of Cu/diamond composites[J]. Journal of Alloys and Compounds, 2013,580:382.
8 Hu H B, Kong J . Improved thermal performance of diamond-copper composites with boron carbide coating[J]. Journal of Materials Engineering and Performance, 2014,23(2):651.
9 Hell J, Chirtoc M, Eisenmenger S C , et al. Characterisation of sputter deposited niobium and boron interlayer in the copper-diamond system[J]. Surface & Coatings Technology, 2012,208:24.
10 Xia Y, Song Y Q, Lin C G , et al. Effect of carbide formers on microstructure and thermal conductivity of diamond-Cu composites for heat sink materials[J]. Transactions of Nonferrous Metals Society of China, 2009,19(5):1161.
11 Deng L F, Zhu X K, Tao J M , et al. Application of active element to Cu/diamond composites[J]. Electronics Process Technology, 2009,30(3):128(in Chinese).
11 邓丽芳, 朱心昆, 陶静梅 , 等. 活性元素在铜/金刚石复合材料中的应用[J]. 电子工艺技术, 2009,30(3):128.
12 Zain-Ul-Abdein M, Raza K, Khalid F A , et al. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites[J]. Materials and Design, 2015,86:248.
13 Wang P P, Guo H, Zhang X M , et al. Interfacial reaction of diamond/Copper composites[J]. Chinese Journal of Rare Metals, 2015,39(4):308(in Chinese).
13 王鹏鹏, 郭宏, 张习敏 , 等. 金刚石/铜复合材料的界面反应研究[J]. 稀有金属, 2015,39(4):308.
14 Chu K, Liu Z F, Jia C C , et al. Thermal conductivity of SPS conso-lidated Cu/diamond composites with Cr-coated diamond particles[J]. Journal of Alloys and Compounds, 2010,490(1):453.
15 Kang Q P, He X B, Ren S B , et al. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J]. Applied Thermal Engineering, 2013,60(1):423.
16 Ren S B, Shen X Y, Guo C Y , et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Composites Science and Techno-logy, 2011,71(13):1550.
17 Lin J M . Research on fabrication and properties of diamond/copper composites[D]. Nanjing:Southeast University, 2014(in Chinese).
17 林金梅 . 金刚石/铜复合材料的制备及性能研究[D]. 南京:东南大学, 2014.
18 Mortimer D A, Nicholas M . The wetting of carbon and carbides by copper alloys[J]. Journal of Materials Science, 1973,8(5):640.
19 Dong Y H, He X B, Rafi U D , et al. Fabrication and thermal conductivity of near-net-shaped diamond/copper composites by pressureless infil-tration[J]. Journal of Materials Science, 2011,46(11):3862.
20 Dong Y H, Zhang R Q, He X B , et al. Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration[J]. Materials Science and Engineering B, 2012,177(17):1524.
21 Xu X L . Diamond surface modification and preparation and perfor-mance of its composites[D]. Changsha:Hunan University, 2012(in Chinese).
21 徐兴龙 . 金刚石表面改性及其复合材料制备工艺与性能[D]. 长沙:湖南大学, 2012.
22 Wang Q . Study on diamond/copper composites fabricated by surface metallization-chemical co-deposition method in electronic packaging application[D]. Tianjin:Tianjin University, 2008(in Chinese).
22 王强 . 表面金属化-共沉积法制备金刚石/铜基封装材料的研究[D]. 天津:天津大学, 2008.
23 Zhang Y, Zhang H L, Wu J H , et al. Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scripta Materialia. 2011,65(12):1097.
24 Wei C L, Xu L, Zhang L B , et al. Research on the density of Cr coating diamond/copper composite material under microwave heating[J]. Mining & Metallurgy, 2016,25(1):31(in Chinese).
24 卫陈龙, 许磊, 张利波 , 等. 微波烧结镀铬金刚石/铜复合材料的致密度研究[J]. 矿冶, 2016,25(1):31.
25 Abyzov A M, Kidalov S V, Shakhov F M . High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix[J]. Journal of Materials Science, 2011,46(5):1424.
26 Abyzov A M, Kidalov S V, Shakhov F M . Filler-matrix thermal boundary resistance of diamond copper composite with high thermal conductivity[J]. Physics of the Solid State, 2012,54(1):210.
27 Abyzov A M, Kidalov S V, Averkin A I , et al. Mechanical properties of a diamond-copper composite with high thermal conductivity[J]. Materials and Design, 2015,87:527.
28 Bai H, Ma N G, Lang J , et al. Thermal conductivity of Cu/diamond compo-sites prepared by a new pretreatment of diamond powder[J]. Composites:Part B, 2013,52:182.
29 Zhang C, Wang R, Cai Z , et al. Low-temperature densification of dia-mond/Cu composite prepared from dual-layer coated diamond particles[J]. Journal of Materials Science:Materials in Electronics, 2015,26(1):185.
30 Li J W, Zhang H L, Zhang S M , et al. On the thermal conductivity of Cu/diamond composite of diamond particles with tungsten coating[J]. Journal of Functional Materials, 2016,47(1):1034(in Chinese).
30 李建伟, 张海龙, 张少明 , 等. 金刚石表面镀钨对铜/金刚石复合材料热导率的影响[J]. 功能材料, 2016,47(1):1034.
31 Kang Q P, He X B, Ren S B , et al. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond compo-sites[J]. Journal of Alloys and Compounds, 2013,576:380.
32 Kang Q P, He X B, Ren S B , et al. Preparation of high thermal conductivity copper-diamond composites using molybdenum carbide-coated diamond particles[J]. Journal of Materials Science, 2013,48(18):6133.
33 Shen X Y, He X B, Ren S B , et al. Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. Journal of Alloys and Compounds, 2012,529:134.
34 Schubert T, Trindade B, Wei?g?rber T , et al. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Materials Science and Engineering A, 2008,475:39.
35 Schubert T, Ciupiński ?, Zielinński W , et al. Interfacial characte-rization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scripta Materialia, 2008,58:263.
36 Weber L, Tavangar R . On the influence of active element content on the thermal conducti-vity and thermal expansion of Cu-X (X=Cr, B) diamond composites[J]. Scripta Materialia, 2007,57(11):988.
37 Ciupiński ?, Kruszewski M J, Grzonka J , et al. Design of interfacial Cr3C2, carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications[J]. Materials & Design, 2017,120:170.
38 Mańkowski P, Dominiak A, Domański R , et al. Thermal conducti-vity enhancement of copper-diamond composites by sintering with chromium additive[J]. Journal of Thermal Analysis and Calorimetry, 2014,116(2):881.
39 Grzonka J, Kruszewski M J, Rosiński M , et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Materials Characterization, 2015,99:188.
40 Guo H, Wang G Z, Zhang X M , et al. Low-temperature heat conduction characteristics of diamond/Cu composite by pressure infiltration method[J]. Rare Metals, 2013,32(6):579.
41 Guo H, Wang G Z, Jia C C , et al. Low-temperature heat conduction characteristics of diamond/Cu composite by high pressure infiltration[J]. Acta Materiae Compositae Sinica, 2014,31(3):550(in Chinese).
41 郭宏, 王光宗, 贾成厂 , 等. 高压熔渗金刚石/铜复合材料的低温导热特性[J]. 复合材料学报, 2014,31(3):550.
42 Fan Y M, Guo H, Xu J , et al. Effects of boron on the microstructure and thermal properties of Cu/diamond composites prepared by pressure infiltration[J]. International Journal of Minerals,Metallurgy and Materials, 2011,18(4):472.
43 Fan Y M, Guo H, Xu J , et al. Pressure infiltrated Cu/diamond composites for LED applications[J]. Rare Metals, 2011,30(2):206.
44 Chu K, Jia C C, Guo H , et al. On the thermal conductivity of Cu-Zr/diamond composites[J]. Materials and Design, 2013,45:36.
45 He J S, Wang X T, Zhang Y , et al. Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method[J]. Composites:Part B, 2015,68:22.
46 Shen W P, Shao W J, Wang Q Y , et al. Thermal conductivity and thermal expansion coefficient of diamond/5 wt%Si-Cu composite by vacuum hot pressing[J]. Fusion Engineering and Design, 2010,85(10):2237.
47 Chen H, Jia C C, Li S J , et al. Selective interfacial bonding and thermal conductivity of diamond/Cu-alloy composites prepared by HPHT technique[J]. International Journal of Minerals,Metallurgy and Materials, 2012,19(4):364.
48 Ali N, Ahmed W, Rego C A , et al. Chromium interlayers as a tool for enhancing diamond adhesion on copper[J]. Diamond & Related Materials, 2000,9(8):1464.
49 Zhang X M, Guo H, Yin F Z , et al. Influences of Cr element on interface structures and thermal properties of Diamond/Cu compo-sites[J]. Chinese Journal of Rare Metals, 2010,34(2):221(in Chinese).
49 张习敏, 郭宏, 尹法章 , 等. Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响[J]. 稀有金属, 2010,34(2):221.
50 Zhang X M, Guo H, Yin F Z , et al. Interfacial microstructure and properties of diamond/Cu-xCr composites for electronic packaging applications[J]. Rare Metals, 2011,30(1):94.
[1] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[2] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[3] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[4] 赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
[5] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[6] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[7] 刘小村, 潘明艳. Ⅰ掺杂提高铅固溶立方相AgBiSe2热电性能[J]. 材料导报, 2023, 37(5): 21060082-5.
[8] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[9] 刘电超, 金国, 井勇智, 崔秀芳, 房永超, 陈卓, 王薪贺. 稀土氧化物掺杂对YSZ热障涂层热物理性能影响的研究进展[J]. 材料导报, 2023, 37(24): 22040242-6.
[10] 郑梓璇, 王德刚, 梁国杰, 栗丽, 王馨博, 苏茹月, 李凯. 聚氨酯泡沫浸渍酚醛树脂溶液制备炭泡沫隔热材料研究[J]. 材料导报, 2022, 36(7): 21060034-7.
[11] 滕宝仁, 黎振华, 李淮阳, 杨睿, 申继标. 选区激光熔化制备颗粒增强金属基复合材料的研究进展[J]. 材料导报, 2022, 36(2): 20040170-6.
[12] 郭靖, 孟永强, 孙金峰, 张少飞. 高导热金刚石/铜复合材料的制备与界面调控研究进展[J]. 材料导报, 2022, 36(15): 20090233-7.
[13] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[14] 张鹏居, 钱钊, 刘相法. Al-B-C晶种合金对6201铝合金导热及力学性能的作用机理分析[J]. 材料导报, 2021, 35(9): 9028-9032.
[15] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed