Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24100237-8    https://doi.org/10.11896/cldb.24100237
  无机非金属及其复合材料 |
基于机器学习的SHAP和PDP分析对UHPC流变性能的研究
周祥胥1, 段锋1,*, 朱博2
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 陕西同人应用材料有限公司,西安 710086
Machine Learning-based Study on Rheological Properties of UHPC by SHAP and PDP Analysis
ZHOU Xiangxu1, DUAN Feng1,*, ZHU Bo2
1 College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Shaanxi Concreate Applied Materials Co., Ltd., Xi’an 710086, China
下载:  全 文 ( PDF ) ( 9756KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作使用机器学习方法结合可解释性工具Shapley Additive exPlanations(SHAP)和Partial Dependence Plot(PDP)来准确预测超高性能混凝土(UHPC)的流变性。通过收集大量的UHPC流变参数相关数据,输入包括用水量、矿物掺合料掺量以及外加剂掺量等在内的变量,构建了四种机器学习预测模型,通过R2、MAE以及RMSE等评估指标选出最佳模型,并进行SHAP以及PDP分析。实验结果表明,最佳机器学习模型结合SHAP和PDP的方法能够有效地预测UHPC的流变性,并且方法的可解释性有助于更好地理解模型的预测过程和结果,为进一步优化UHPC配合比提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周祥胥
段锋
朱博
关键词:  SHAP  PDP  超高性能混凝土(UHPC)  机器学习  流变性能    
Abstract: In this study, machine learning methods combined with interpretable tools SHAP (Shapley Additive exPlanations) and PDP (Partial Depen-dence Plot) were used to accurately predict the rheology of ultra-high performance concrete (UHPC). By collecting a large amount of UHPC rheological parameter data and input variables including water consumption, mineral admixture content and admixture content, four kinds of machine learning prediction models were constructed. The optimal models were selected by R2, MAE, RMSE and other evaluation indicators, and SHAP and PDP analysis were carried out. The experimental results show that the optimal machine learning model combined with SHAP and PDP can effectively predict the rheology of UHPC. Moreover, the interpretability of the method helps to better understand the prediction process and results of the model, and provides a basis for further optimizing the mix ratio of UHPC.
Key words:  SHAP    PDP    ultra-high performance concrete (UHPC)    machine learning    rheological property
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TU528.01  
基金资助: 陕西省重点研发计划(2024GX-YBXM-373)
通讯作者:  *段锋,博士,副教授,研究领域包括固体废弃物脱硫石膏、城市建筑垃圾的综合利用、高温结构材料制备与合成、陶瓷耐火材料与超硬材料基础应用和成果转化等。xjddf@163.com   
作者简介:  周祥胥,西安建筑科技大学材料科学与工程学院硕士研究生,主要研究领域为超高性能混凝土。
引用本文:    
周祥胥, 段锋, 朱博. 基于机器学习的SHAP和PDP分析对UHPC流变性能的研究[J]. 材料导报, 2026, 40(2): 24100237-8.
ZHOU Xiangxu, DUAN Feng, ZHU Bo. Machine Learning-based Study on Rheological Properties of UHPC by SHAP and PDP Analysis. Materials Reports, 2026, 40(2): 24100237-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100237  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24100237
1 Ding Q F, Jin Y Z, Meng X F. Construction and Building Materials, 2023, 385, 56.
2 Nguyen T, Tran T, Hoang N. Advanced Engineering Informatics, 2020, 44, 101057.
3 Bo Y C, Liu M, Wu I L, et al. Construction and Building Materials, 2023, 399, 132522.
4 Şahin H G, Altun O B, Eser M. Construction and Building Materials, 2024, 411, 134633.
5 Charrier M, et al. Cement and Concrete Research, 2022, 156, 106761.
6 Hatice G Ş, Öznur B A, Murat E, et al. Construction and Building Materials, 2024, 411, 134633.
7 Ekanayake I, Meddage D, Rathnayake U. Construction Materials, 2022, 16, e01059.
8 Amin M N, Iqbal M, Khan K, et al. Polymers, 2022, 14, 1303.
9 Rezaul K, Hamidul I, Shuvo D D, et al. Case Studies in Construction Materials, 2024, 20, e02828.
10 Abul K, Rezaul K, Somir C M, et al. Case Studies in Construction Materials, 2024, 24, e02991.
11 Tran M V, Cu Y T H, Le C V H. Journal of Building Engineering, 2021, 44, 103400.
12 Arunothayan A R, Nematollahi B, Khayat K H, et al. Cement and Concrete Composites, 2023, 136, 104854.
13 Zhang Q Q, Zhang L H, Ran Q P. Journal of Building Materials, 2019, 22(5), 680 (in Chinese).
张倩倩, 张丽辉, 冉千平. 建筑材料学报, 2019, 22(5), 680.
14 Shang T T, Wang H X, Sun D A. China Concrete and Cement Products, 2023(9), 7 (in Chinese).
商涛平, 王洪新, 孙德安. 混凝土与水泥制品, 2023(9), 7.
15 Wu Z, Khayat H K, Shi C. Cement and Concrete Research, 2019, 123, 105786.
16 Rui Y, Fengjiao Z, Tianyi Y, et al. Construction and Building Materials, 2021, 271, 121500.
17 Wang R, Gao X, Huang H, et al. Construction and Building Materials, 2017, 73, 14465.
18 Zhang C, Wang J, Zhang X, et al. Case Studies in Construction Materials, 2024, 20, e03036.
19 Li K, Leng Y, Xu L, et al. Construction and Building Materials, 2022, 349, 128793.
20 Cao R Z, Zhou M R, Zhou Q. Materials Reports, 2019, 33(16), 2684 (in Chinese).
曹润倬, 周茗如, 周群. 材料导报, 2019, 33(16), 2684.
21 Mehdipour I, Khayat H K. Construction and Building Materials, 2018, 161, 340.
22 Zhang C. Rheological properties of ultra-high performance concrete and their effects on steel fiber distribution. Master’s Thesis, Jinan University, China, 2023 (in Chinese).
张冲. 超高性能混凝土流变性能及其对钢纤维分布特性的影响. 硕士学位论文, 济南大学, 2023.
23 Jinyang C, Zhen H, Guozhi Z, et al. Construction and Building Materials, 2022, 321, 126154.
24 Chen F X, Yang R H, Wang Z Y, et al. Journal of Building Engineering, 2023, 68, 106167.
25 Wakjira G T, Kutty A A, Alam S M. Construction and Building Materials, 2024, 416, 135114.
26 Friedman H J. The Annals of Statistics, 2001, 29, 1189.
27 Safhi M E, Dabiri H, Soliman A, et al. Powder Technology, 2024, 438, 119623.
28 Chen T, Gao X, Ren M. Construction and Building Materials, 2018, 158, 864.
29 Liu L X, Ding Q F, Kang N L, et al. Expert Systems with Applications, 2024, 242, 122790.
30 Pal A, Ahmed S K, Mangalathu S. Construction and Building Materials, 2024, 417, 135369.
31 Kovler K, Roussel N. Cement and Concrete Research, 2011, 41, 775.
32 Liu Z Y. Rheological property control and mechanical properties characterization of 3D printed cement-based materials. Master’s Thesis, China Building Materials Science Research Institute, China, 2019 (in Chinese).
刘致远. 3D打印水泥基材料流变性能调控及力学性能表征. 硕士学位论文, 中国建筑材料科学研究总院, 2019.
33 Song Y G, Qi L L, Kun L, et al. Case Studies in Construction Materials, 2023, 18, e01952.
34 Gelardi G, Flatt R J. In:Science and Technology of Concrete Admixtures, UK, Woodhead Publishing, 2016, pp. 257.
35 Huang H. Study on rheological properties of fly ash concrete. Master’s Thesis, Wuhan University of Technology, China, 2011 (in Chinese).
黄浩. 粉煤灰混凝土流变性能研究. 硕士学位论文, 武汉理工大学, 2011.
36 Boulekbache B, Hamrat M, Chemrouk M, et al. Construction and Building Materials, 2010, 24, 1664.
[1] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[4] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[5] 张万国, 万贵稳, 乔元辉, 张吉哲, 熊远顺. 生物油基再生剂对老化沥青流变性能恢复规律研究[J]. 材料导报, 2025, 39(22): 24110036-8.
[6] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[7] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[8] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[9] 李俊炎, 张伟强, 高志玉. 机器学习辅助高熵合金设计的研究进展[J]. 材料导报, 2025, 39(18): 24080091-10.
[10] 葛宇飞, 刘东青, 程海峰, 桂博恒, 王新飞, 贾岩. 基于机器学习的光谱选择性红外辐射材料设计研究进展[J]. 材料导报, 2025, 39(15): 24080168-9.
[11] 杨正辉, 朱涛, 张东生, 杨秋宁, 毛明杰. 纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究[J]. 材料导报, 2025, 39(15): 24050076-11.
[12] 杨雨, 黄斌, 黄伟, 龚明子, 潘阿馨, 陈庆丰, 陈宝春, 韦建刚. UHPC中纤维间距折减效应试验与模拟研究[J]. 材料导报, 2025, 39(14): 24070154-8.
[13] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[14] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[15] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed