Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24100242-8    https://doi.org/10.11896/cldb.24100242
  无机非金属及其复合材料 |
ZnS-g-C3N4/C的合成及光催化降解四环素研究
吴睿琦1,2, 刘成宝1,2,3,*, 陈丰1,2,3, 邱永斌4, 孟宪荣5, 陈志刚1,2,3
1 苏州科技大学江苏省环境功能材料重点实验室,江苏 苏州 215009
2 苏州科技大学材料科学与工程学院,江苏 苏州 215009
3 苏州科技大学江苏水处理技术与材料协同创新中心,江苏 苏州 215009
4 江苏省陶瓷研究所有限公司,江苏 宜兴 214221
5 苏州市环境科学研究所,江苏 苏州 215007
Synthesis of ZnS-g-C3N4/C and Its Photocatalytic Performance for Tetracycline
WU Ruiqi1,2, LIU Chengbao1,2,3,*, CHEN Feng1,2,3, QIU Yongbin4, MENG Xianrong5, CHEN Zhigang1,2,3
1 Jiangsu Key Laboratory for Environment Functional Materials, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
2 School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
3 Jiangsu Collaborative Innovation Center of Technology and Material for Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
4 Jiangsu Province Ceramics Research Institute Co., Ltd., Yixing 214221, Jiangsu, China
5 Suzhou Institute of Environmental Science, Suzhou 215007, Jiangsu, China
下载:  全 文 ( PDF ) ( 16803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以茼蒿茎秆为生物模板、三聚氰胺为氮化碳前驱体,通过热聚合法制备出g-C3N4/C。以无水醋酸锌和硫脲为Zn源和S源合成ZnS,通过溶剂热法将ZnS负载于g-C3N4/C表面,成功制备出ZnS-g-C3N4/C三相复合材料,构建了ZnS和g-C3N4之间的异质结构。通过XRD、SEM、TEM、X射线光电子能谱、氮气吸附-脱附测试、稳态荧光光谱等方法对复合材料的相结构、微观形貌、孔结构及光催化性能进行表征。结果表明,三相复合材料形貌均一、结构完整,具有较大比表面积和较多反应活性位点。光催化性能测试中,当g-C3N4前驱体和茼蒿茎秆的质量比为3∶1时得到的样品3g-C3N4/C具有最佳的光催化性能,光催化降解盐酸四环素效率达到49.9%,是纯相g-C3N4的1.76倍。ZnS负载于3g-C3N4/C的最佳含量为30%(质量分数,如无特别说明,余同),光催化降解四环素的效率达61.2%,是纯相g-C3N4的2.16倍,且经过四次循环后降解率仅降至60.5%,表现出较高的光催化稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴睿琦
刘成宝
陈丰
邱永斌
孟宪荣
陈志刚
关键词:  g-C3N4  生物模板法  光催化  四环素  复合材料    
Abstract: A ternary ZnS-g-C3N4/C heterostructured composite was synthesized via a bio-templated thermal polymerization and solvothermal strategy to enhance photocatalytic activity. Carbon-modified g-C3N4 (g-C3N4/C) was first fabricated using crown daisy stems as biological templates and melamine as the precursor. Subsequently, ZnS nanoparticles derived from zinc acetate anhydrous and thiourea were uniformly deposited onto the g-C3N4/C matrix through solvothermal treatment, forming a well-integrated heterojunction structure. Comprehensive characterization via XRD, SEM, TEM, X-ray photoelectron spectroscopy, N2 adsorption-desorption test, and photoluminescence spectroscopy confirmed the composite’s homogeneous morphology, structural integrity, high specific surface area, and abundant active sites. The optimized g-C3N4/C sample with a 3∶1 mass ratio of precursor to bio-template exhibited a tetracycline hydrochloride degradation efficiency of 49.9% under visible light, outperforming pristine g-C3N4 by 1.76-fold. Further enhancement was achieved by incorporating 30wt% ZnS, yielding a tetracycline degradation efficiency of 61.2% (1.16 times higher than pure g-C3N4) with minimal activity loss (60.5% retention after four cycles), demonstrating exceptional stability. The improved performance could be attributed to synergistic effects between the heterojunction-mediated charge separation and carbon-induced electron transfer pathways.
Key words:  g-C3N4    biological template method    photocatalysis    tetracycline    composite material
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TB333  
基金资助: 江苏省自然科学基金(BK20180103;BK20180971);苏州市科技发展计划(SS202036)
通讯作者:  *刘成宝,博士,苏州科技大学材料科学与工程学院副教授、硕士研究生导师。主要研究二维基催化材料、量子点材料和环境功能材料等的结构设计、合成及其环境和能源性能评价。Lcb@mail.usts.edu.cn   
作者简介:  吴睿琦,苏州科技大学材料科学与工程学院硕士研究生,在刘成宝副教授的指导下开展环境和能源材料的设计合成及其性能评价的研究。
引用本文:    
吴睿琦, 刘成宝, 陈丰, 邱永斌, 孟宪荣, 陈志刚. ZnS-g-C3N4/C的合成及光催化降解四环素研究[J]. 材料导报, 2026, 40(2): 24100242-8.
WU Ruiqi, LIU Chengbao, CHEN Feng, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Synthesis of ZnS-g-C3N4/C and Its Photocatalytic Performance for Tetracycline. Materials Reports, 2026, 40(2): 24100242-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100242  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24100242
1 Wei Z, Liu J, Shangguan W. Chinese Journal of Catalysis, 2020, 41(10), 1440.
2 Pan J, Shen S, Zhou W, et al. Acta Physico-Chimica Sinica, 2020, 36(3), 1905068.
3 Fang Y, Zheng Y, Fang T, et al. Science China Chemistry, 2019, 63(2), 149.
4 Nanidpour A H, Ahmed M B, Zhou J L. Nanomaterials, 2024, 14(2), 135.
5 Miao Z, Wang G, Li L, et al. Journal of Materials Science, 2019, 54(23), 14320.
6 Qamar M A, Shahid S, Javed M. Ceramics International, 2020, 46(14), 22171.
7 Fan Z, Xu C, Cheng J, et al. Journal of Materials Science Materials in Electronics, 2023, 34(26), 1808.
8 Yendrapati T P, Gautam A, Bojja S, et al. Solar Energy, 2020, 196, 540.
9 Idrees F, Butt F K, Hammouda S B. Catalysts, 2021, 11, 472.
10 Ismael M. Journal of Alloys and Compounds, 2020, 846, 156846.
11 Li S, Fang Y, Mu J, et al. Colloids and Surfaces A, 2024, 680, 132734.
12 Zhao C, Zhou J, Yan Y, et al. Science of the Total Environment, 2021, 765, 142795.
13 Benalia M C, Youcef L, Bouaziz M G, et al. Arabian Journal for Science and Engineering, 2022, 47(5), 5587.
14 Shchekin A K, Rusanov A I. Journal of Chemical Physics, 2008, 129(15), 448.
15 Tahir M, Cao C, Mahmood N, et al. ACS Applied Materials & Interfaces, 2014, 6(2), 1258.
16 Xu J, Xu F, Qian M, et al. Advanced Materials, 2017, 29(31), 1701674.
17 Herrera-Beuruin M C, Hidalgo-Carrillo J, López-Tenllaado F J, et al. Catalysts, 2021, 11(11), 1364.
18 Tong Y, Hou Y, Zhang Z, et al. Applied Catalysis A, 2023, 665, 119387.
19 Chang C J, Chao P Y. International Journal of Hydrogen Energy, 2019, 44(37), 20805.
20 Chang C J, Wei Y H, Huang K P. International Journal of Hydrogen Energy, 2017, 42(37), 23578.
21 Zhu B, Zhou J, Ni L, et al. Journal of Solid State Chemistry, 2022, 305, 122703.
22 Rameshbabu R, Ravi P, Sathish M. Chemical Engineering Journal, 2019, 360, 1277.
23 Jain R. Journal of Superconductivity and Novel Magnetism, 2022, 35(5), 1033.
24 Mendoza-Damián G, Hernández-Gordillo A, Fernández-García M E, et al. International Journal of Hydrogen Energy, 2019, 44(21), 10528.
25 Wang Q, Xu P, Zhang G, et al. Applied Surface Science, 2019, 488, 360.
26 Yu L, Chen W, Li D, et al. Applied Catalysis B, 2015, 164, 453.
27 Sabbah A, Shown I, Qorbani M, et al. Nano Energy, 2022, 93, 106809.
[1] 李静, 焦之森, 张灵, 黄莹, 陈正. 超高韧性矿渣-甘蔗渣灰基地聚物复合材料的流变特性研究[J]. 材料导报, 2026, 40(2): 24080183-7.
[2] 赵昌方, Boris Nikitovich Fedulov, 刘浩. 层合碳纤维复合材料拉胀超结构的力学行为研究[J]. 材料导报, 2026, 40(2): 25020163-10.
[3] 周甲佳, 王一锋, 赵军, 宋晨阳, 吕文朴. 石灰石煅烧黏土基ECC单轴拉伸性能及抗压强度[J]. 材料导报, 2026, 40(1): 24120246-8.
[4] 曹雷刚, 周权, 黄磊, 杨越, 蔡长宏, 刘园, 崔岩. 时效处理对高体分SiCp/7075Al复合材料力学性能的影响[J]. 材料导报, 2026, 40(1): 25030084-8.
[5] 贾婧, 庄伟彬, 李菁辉, 曹庆, 刘敬福. Ce对原位自生TiB2/6061复合材料显微组织及力学性能的影响[J]. 材料导报, 2026, 40(1): 24070164-7.
[6] 殷子洛, 朱泉峣, 李凯, 张成杰, 周彦鹏, 张雨晴. 聚丙烯纤维增强交联聚苯乙烯的介电及力学性能研究[J]. 材料导报, 2026, 40(1): 25010020-6.
[7] 姜劲驰, 李文晓, 方可言. 人工智能方法在RTM工艺仿真中的应用[J]. 材料导报, 2026, 40(1): 24120233-8.
[8] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[9] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[10] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[11] 阳东胤, 赵媛, 燕红. 碳量子点的制备、性质及在光催化领域中的应用研究进展[J]. 材料导报, 2025, 39(8): 24060102-13.
[12] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[13] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[14] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[15] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed