Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24090189-11    https://doi.org/10.11896/cldb.24090189
  无机非金属及其复合材料 |
镁-煤基全固废充填材料的强度特性及微结构演化研究
刘浪1,2,*, 袁毅1,2, 王海社4, 蔚保宁3, 梁雄4, 朱梦博1,2, 刘彪4, 胡涛4, 杨潘1,2
1 西安科技大学能源与矿业工程学院,西安 710054
2 西安科技大学矿山功能性充填技术研究中心,西安 710054
3 西安弗尔绿创矿业科技有限责任公司,西安 710054
4 陕西榆能化学材料有限公司,陕西 榆林 719000
Strength Characteristics and Microstructure Evolution of Magnesium-Coal Based All Solid Waste Backfill Materials
LIU Lang1,2,*, YUAN Yi1,2, WANG Haishe4, WEI Baoning3, LIANG Xiong4, ZHU Mengbo1,2, LIU Biao4, HU Tao4, YANG Pang1,2
1 College of Energy and Mining Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2 Mine Functional Backfill Technology Research Center, Xi’an University of Science and Technology, Xi’an 710054, China
3 Xi’an Fur Lvchuang Mining Technology Co, Xi’an 710054, China
4 Shaanxi Yuneng Chemical Materials Co, Yulin 719000, Shaanxi China
下载:  全 文 ( PDF ) ( 41846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着煤矿资源开采及深加工,大量的固体废弃物堆存于地表。为了实现矿山绿色开采,推动大宗固废处置利用,采用改性镁渣(MMS)、煤气化渣(CGS)、煤矸石(CG)和脱硫石膏(FDG)四种固体废弃物制备镁-煤基全固废充填材料(M-CSWBM)。分析了M-CSWBM的物相组成、微观样貌及元素分布、力学性能等,揭示不同种类和不同掺量固废对充填体微观结构和宏观力学发展的影响。研究表明:MMS、CGS、FDG质量分数分别为20%、40%、5%时,试件抗压强度最高,养护3 d、28 d、56 d强度分别为0.26 MPa、9.55 MPa和12.16 MPa;CGS和MMS掺入,会使体系中水化产物明显增加,大孔向小孔转变且最可几孔径逐渐变小,强度呈正增长趋势;FDG掺量对M-CSWBM体系力学性能呈现显著阈值效应。当FDG掺量增至7.5%时,其通过激发二次水化反应显著优化孔隙结构(最可几孔径降低48%),促使28 d抗压强度达5.65 MPa,较基准组(0.76 MPa)提升641%;而掺量超过临界阈值(7.5%)后,未反应的FDG颗粒导致孔隙粗化(最可几孔径回升21%),致使10%掺量试件强度衰减至5.09 MPa,较最优掺量组下降10%。基于上述结果,通过建立水化产物、孔隙结构与抗压强度之间的相关性,揭示了固废掺量通过影响水化产物、孔隙结构,进而对抗压强度发展规律产生影响。研究成果为大宗全固废充填材料的利用提供数据支撑和理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘浪
袁毅
王海社
蔚保宁
梁雄
朱梦博
刘彪
胡涛
杨潘
关键词:  改性镁渣  煤气化渣  胶凝材料  全固废  充填材料    
Abstract: With the mining and deep processing of coal resources, a large amount of solid waste is deposited on the surface. In order to achieve green mining and promote the disposal and utilization of bulk solid waste, modified magnesium slag (MMS), coal gasification slag (CGS), coal gangue (CG), and desulfurization gypsum (FDG) were used to prepare magnesium-coal based solid waste backfill material (M-CSWBM). Uniaxial compression testing, X-ray polycrystalline diffraction(XRD), thermogravimetric analysis(TG), scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), and mercury intrusion porosimetry testing methods(MIP) were used to reveal the effects of different types and amounts of doped solid wastes on the microstructure and macroeconomics development of the filled body. The experimental results demonstrated that the specimens attained optimal compressive strength when the constituent proportions of MMS, CGS, and FDG were maintained at 20%, 40%, and 5% respectively. The corresponding compressive strengths measured 0.26 MPa, 9.55 MPa, and 12.16 MPa following curing periods of 3 d, 28 d, and 56 d; CGS and MMS incorporation, will make the hydration products in the system increased significantly, the transformation of large pores to small pores and the most available pore size gradually become smaller, the strength of the positive growth trend; appropriate amount of FDG incorporation to promote the hydration reaction, the system connected to the voids to be refined, the strength of the growth of the role of a significant contribution to the growth of the. FDG addition from 0% to 7.5% increased the compressive strength of M-CSWBM specimens at 28 d from 0.76 MPa to 5.65 MPa, an enhancement of 641%, but excessive addition resulted in an increase in both internal porosity, and most available pore size, which inhibited the strength increase. A 10% decrease in strength was observed for the 10% FDG doped specimens at 28 d compared to the 7.5% doped. Based on the above results, by establishing the correlation between hydration products, pore structure and compressive strength, it reveals that the solid waste dosing affects the development law of compressive strength by influencing the hydration pro-ducts, pore structure and then the compressive strength. The research results provide data support and theoretical reference for the utilization of bulk all-solid waste backfill materials.
Key words:  modified magnesium slag    coal gasification slag    cementitious materials    total solid waste    backfill material
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TD801  
基金资助: 国家自然科学基金(52222404;52074212;51874229);陕西省重点研发计划(2023-LL-QY-07)
通讯作者:  *刘浪,西安科技大学能源与矿业工程学院教授、博士研究生导师。主要从事矿山功能性充填方面的教学与科研工作。liulang@xust.edu.cn   
引用本文:    
刘浪, 袁毅, 王海社, 蔚保宁, 梁雄, 朱梦博, 刘彪, 胡涛, 杨潘. 镁-煤基全固废充填材料的强度特性及微结构演化研究[J]. 材料导报, 2026, 40(2): 24090189-11.
LIU Lang, YUAN Yi, WANG Haishe, WEI Baoning, LIANG Xiong, ZHU Mengbo, LIU Biao, HU Tao, YANG Pang. Strength Characteristics and Microstructure Evolution of Magnesium-Coal Based All Solid Waste Backfill Materials. Materials Reports, 2026, 40(2): 24090189-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090189  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24090189
1 He G, Lin J, Zhang Y, et al. One Earth, 2020, 3(2), 187.
2 Lv B, Deng X W, Jiao F S, et al. Process Safety and Environmental Protection, 2023, 171, 859.
3 Li Y, Wang H H. Jiaotong Keji Yu Guanli 2023, 4(16), 135(in Chinese).
李钰, 王行行. 交通科技与管理, 2023, 4(16), 135.
4 Guo F Q, Liu K L, Qiao Y, et al. Coal Processing & Comprehensive Utilization, 2023(8), 89(in Chinese).
郭富强, 刘昆仑, 俞乔, 等. 煤炭加工与综合利用, 2023(8), 89.
5 Zhu J F, Li J, Yan L, et al. Clean Coal Technology, 2021, 27(6), 11(in Chinese).
朱菊芬, 李健, 闫龙, 等. 洁净煤技术, 2021, 27(6), 11.
6 Chen X L, Liang C, Song D Y. Northeast Electric Power Technology, 2020, 41(7), 27(in Chinese).
陈晓龙, 梁川, 宋大勇. 东北电力技术, 2020, 41(7), 27.
7 Guo J J, Niu Y E. Metallurgy and Materials, 2023, 43(1), 9(in Chinese).
郭静静, 牛艳娥. 冶金与材料, 2023, 43(1), 9.
8 Zhu T, Han Y W. China Coal, 2020, 46(12), 86(in Chinese).
竹涛, 韩一伟. 中国煤炭, 2020, 46(12), 86.
9 Liu J G, Li X W, He T. Journal of China Coal Society, 2020, 45(1), 141(in Chinese).
刘建功, 李新旺, 何团. 煤炭学报, 2020, 45(1), 141.
10 Liu J, Qin K. Mining Safety & Environmental Protection, 2023, 50(6), 7(in Chinese).
刘具, 秦坤. 矿业安全与环保, 2023, 50(6), 7.
11 Liu L, Fang Z Y, Zhang B, et al. Metal Mine, 2021(3), 1(in Chinese).
刘浪, 方治余, 张波, 等. 金属矿山, 2021(3), 1.
12 Zhou L B, Sun X H, Liu Z, et al. Journal of China Coal Society, 2023, 48(12), 4536(in Chinese).
周林邦, 孙星海, 刘泽, 等. 煤炭学报, 2023, 48(12), 4536.
13 Wang M, He X, Yang K. Sustainability, 2023, 15(2), 1523.
14 Hua X Z, Chang G F, Liu X, et al. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(8), 1536(in Chinese).
华心祝, 常贯峰, 刘啸, 等. 岩石力学与工程学报, 2022, 41(8), 1536.
15 Wei Z, Yang K, He X, et al. Materials, Multidisciplinary Digital Publishing Institute, 2022, 15(15), 5318.
16 Guo L Z, Zhou M, Wang L J, et al. Journal of Building Materials, 2022, 25(10), 1092(in Chinese).
郭凌志, 周梅, 王丽娟, 等. 建筑材料学报, 2022, 25(10), 1092.
17 Zhang J Q, Yang K, He X, et al. Metals, 2022, 12(7), 1155.
18 Yang K, Zhao X Y, He X, et al. Shanxi Coal, 2021, 41(4), 2(in Chinese).
杨科, 赵新元, 何祥, 等. 山西煤炭, 2021, 41(4), 2.
19 Zhang W Y, Lin H X, Wang S, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 526(in Chinese).
张文艳, 林华夏, 王帅, 等. 硅酸盐通报, 2022, 41(2), 526.
20 Ma H Q, Yi C, Chen H Y, et al. Chinese Journal of Materials Research, 2018, 32(12), 898(in Chinese).
马宏强, 易成, 陈宏宇, 等. 材料研究学报, 2018, 32(12), 898.
21 Yao W, Zheng B K, Qiu J P, et al. Materials Reports, 2022, 36(S1), 578(in Chinese).
姚维, 郑伯坤, 邱景平, 等. 材料导报, 2022, 36(S1), 578.
22 Liu L, Ruan S S, Fang Z Y, et al. Journal of China Coal Society, 2021, 46(12), 3833(in Chinese).
刘浪, 阮仕山, 方治余, 等. 煤炭学报, 2021, 46(12), 3833.
23 Lu M Y, Pang L X, Yang D, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(7), 2344(in Chinese).
卢明阳, 庞来学, 杨达, 等. 硅酸盐通报, 2022, 41(7), 2344.
24 Ni W, Li Y, Xu C W, et al. Journal of Central South University(Science and Technology), 2019, 50(10), 2342(in Chinese).
倪文, 李颖, 许成文, 等. 中南大学学报(自然科学版), 2019, 50(10), 2342.
25 Qi Z H, Li J J, Ni W, et al. Mining Research and Development, 2022, 42(10), 58(in Chinese).
齐子函, 李佳洁, 倪文, 等. 矿业研究与开发, 2022, 42(10), 58.
26 Yu K P, Ma L Q, Huo B B, et al. Journal of Materials Research and Technology, 2024, 28, 2924.
27 Liu C H, Yue X T, Jiao C B, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3574(in Chinese).
刘冲昊, 岳雪涛, 矫川本, 等. 硅酸盐通报, 2020, 39(11), 3574.
28 Ke G J, Li Z Y, Jiang H S. Construction and Building Materials, 2024, 427, 136284.
29 Zhao J, Wang Y K, Wang J Y, et al. Industrial Catalysis, 2022, 30(3), 1(in Chinese).
赵江, 王云康, 王建友, 等. 工业催化, 2022, 30(3), 1.
30 Sun W J, Liu L, Xu L H, et al. Journal of Central South University (Science and Technology), 2022, 53(10), 4057(in Chinese).
孙伟吉, 刘浪, 徐龙华, 等. 中南大学学报(自然科学版), 2022, 53(10), 4057.
31 Yang P, Liu L, Suo Y L, et al. Science of The Total Environment, 2023, 880, 163209.
32 Ruan S S, Liu L, Zhu M B, et al. Journal of Cleaner Production, 2023, 138269.
33 Qiao H, Zuo Y, Qu J, et al. Clean Coal Technology, 2023, 29(S2), 109(in Chinese).
乔会, 左岳, 屈洁, 等. 洁净煤技术, 2023, 29(S2), 109.
34 Ji G X, Peng X Q, Wang S P, et al. Construction and Building Materials, 2021, 295, 123619.
35 Lu Q Q. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(1), 252(in Chinese).
陆青清. 吉林大学学报(工学版), 2021, 51(1), 252.
36 Birnin-Yauri U A, Glasser F P. Cement and Concrete Research, 1998, 28(12), 1713.
37 Shi Z G, Geiker M R, Lothenbach B, et al. Cement and Concrete Composites, 2017, 78, 73.
38 Kim T, Olek J. Transportation Research Record, SAGE Publications Inc, 2012, 2290(1), 10.
39 Yan A Y, Ni W, Huang X Y, et al. Chinese Journal of Engineering, 2016, 38(7), 899(in Chinese).
阎爱云, 倪文, 黄晓燕, 等. 工程科学学报, 2016, 38(7), 899.
40 Li Z Z, Zhang Y Y, Zhao H Y, et al. Construction and Building Materials, 2019, 213, 265.
41 Li Z Z, Guan Y, Zhao H Y, et al. Journal of Materials Science and Engineering, 2019, 37(1), 119(in Chinese).
李祖仲, 关羽, 赵红艳, 等. 材料科学与工程学报, 2019, 37(1), 119.
42 Liu H T, Li Y, Yu Y J, et al. Journal of China University of Petroleum(Edition of Natural Science), 2025, 49(1), 211. (in Chinese).
刘慧婷, 李妍, 于永金, 等. 中国石油大学学报(自然科学版), 2025, 49(1), 211.
43 Ruan S S, Liu L, Shao C C, et al. Construction and Building Materials, 2023, 392, 132019.
44 Wu Z W. Journal of the Chinese Ceramic Society, 1979(3), 262(in Chinese).
吴中伟. 硅酸盐学报, 1979 (3), 262.
45 Li M Y. China Resources Comprehensive Utilization, 2018, 36(5), 9(in Chinese).
李明艳. 中国资源综合利用, 2018, 36(5), 9.
46 Zhou Y H, Zhang W W. Mining Research and Development, 2023, 43(10), 27(in Chinese).
周艳华, 张伟伟. 矿业研究与开发, 2023, 43(10), 27.
47 Liu L, Fang Z Y, Qi C C, et al. Construction and Building Materials, 2018, 179, 254.
48 Yan P Y, Chen W Y, Yang J. Cement, 2023(1), 1(in Chinese).
阎培渝, 陈炜一, 杨剑. 水泥, 2023(1), 1.
[1] 明阳, 肖登凯, 李玲, 李忻恒, 朱奇阳, 黄登科, 任昊. 亚硝酸型Cl-固化剂在海砂混凝土中的固化机理研究[J]. 材料导报, 2025, 39(8): 23100207-7.
[2] 朱绘美, 刘毓, 李辉. 微波养护期间磨细粉煤灰碱激发胶凝材料的强度发展[J]. 材料导报, 2025, 39(20): 24090095-7.
[3] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[4] 任才富, 王栋民, 房奎圳, 王吉祥, 李晓慧, 张信龙. 硫铝水泥改性固废基胶凝材料性能与水化进程研究[J]. 材料导报, 2025, 39(18): 24090006-8.
[5] 王国辰, 胡长明, 武智鹏, 李靓, 樊恒辉, 何小文. 电石渣碱激发钢渣-矿渣胶凝材料的性能与水化机理[J]. 材料导报, 2025, 39(18): 24090103-8.
[6] 王长龙, 付兴帅, 杨彩霞, 张凯帆, 白云翼, 路璐, 高占须, 郑永超, 刘治兵, 翟玉新, 刘枫. 钒钛铁尾矿制备矿山修复混凝土及性能研究[J]. 材料导报, 2025, 39(14): 24050044-6.
[7] 吴平川, 刘治兵, 黄天勇, 郑永超, 张凯帆, 王长龙, 康旺, 付兴帅, 白云翼, 翟玉新, 刘枫. 煤气化渣胶凝活性激发及机理研究进展[J]. 材料导报, 2025, 39(12): 24030152-9.
[8] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[9] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[10] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[11] 韩瑞凯, 陈宇鑫, 张健, 李召峰, 王衍升. 养护温度对赤泥基路用胶凝材料性能及微观结构的影响[J]. 材料导报, 2024, 38(22): 24060144-8.
[12] 聂松, 周健, 徐名凤, 李辉. 低碳胶凝材料的研究进展[J]. 材料导报, 2024, 38(2): 22050304-9.
[13] 仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
[14] 曾田, 陈啸洋, 王南, 张婷婷, 关岩, 毕万利, 常钧. 镁质胶凝材料综述:研究进展与低碳路径探讨[J]. 材料导报, 2024, 38(17): 24010170-15.
[15] 刘泽, 段开瑞, 周梅, 张海波, 罗树琼, 房奎圳, 王栋民. 煤矸石在土木工程材料中的应用研究进展[J]. 材料导报, 2024, 38(10): 23050198-12.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed