Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24030152-9    https://doi.org/10.11896/cldb.24030152
  无机非金属及其复合材料 |
煤气化渣胶凝活性激发及机理研究进展
吴平川1,2, 刘治兵1,2, 黄天勇1,*, 郑永超1, 张凯帆3, 王长龙1,2,4,*, 康旺1, 付兴帅2, 白云翼2, 翟玉新5, 刘枫6
1 北京建筑材料科学研究总院有限公司,固废资源化利用与节能建材国家重点实验室,北京 100041
2 河北工程大学土木工程学院,河北省建筑工程低碳建造与韧性提升重点实验室,河北 邯郸 056038
3 江西理工大学资源与环境工程学院,江西 赣州 341000
4 武汉科技大学,国家环境保护矿冶资源利用与污染控制重点实验室,武汉 430081
5 中铁建设集团有限公司,北京 100040
6 中铁建设集团建筑发展有限公司,北京 100070
Research Progress on Excitation and Mechanism of Coal Gasification Slag Cementitious Reactivity
WU Pingchuan1,2, LIU Zhibing1,2, HUANG Tianyong1,*, ZHENG Yongchao1, ZHANG Kaifan3,WANG Changlong1,2,4,*, KANG Wang1, FU Xingshuai2, BAI Yunyi2, ZHAI Yuxin5, LIU Feng6
1 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China
2 Hebei Province Key Laboratory for Low-Carbon Construction and Resilience Enhancement of Construction Engineering, School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China
3 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000,Jiangxi, China
4 State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China
5 China Railway Construction Group Co., Ltd., Beijing 100040, China
6 Construction Development Co., Ltd., China Railway Construction Group, Beijing 100070, China
下载:  全 文 ( PDF ) ( 22593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤气化渣作为煤化工产业的主要固体废弃物,具有堆存量大、含碳量高、胶凝活性弱及重金属赋存等特点,其规模化无害化利用面临挑战。本文系统综述了煤气化渣的矿物学特性及其胶凝活性提升的影响机制,研究表明,煤气化渣中高聚合度的铝硅酸盐玻璃体及残碳是限制其活性的核心因素,物理活化通过机械研磨破坏晶体结构并增大比表面积,但作用效果有限;化学活化主要通过酸、碱、盐、有机溶剂,解聚铝硅酸盐玻璃体网络结构,释放活性Al3+、Si4+、Ca2+离子提升活性,但需精确控制水化反应;热活化可通过高温消除残碳与重构煤气化渣的晶相,但能耗较高;复合活化及生物矿化展现出协同增效的潜力,但目前研究较少。未来需从煤气化渣矿物学特性出发,开发低碳高效的多技术联用路径,突破高掺量应用瓶颈,为煤气化渣建材化高值化利用提供理论支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴平川
刘治兵
黄天勇
郑永超
张凯帆
王长龙
康旺
付兴帅
白云翼
翟玉新
刘枫
关键词:  煤气化渣  矿物学特性  胶凝活性  激发机理  资源化利用    
Abstract: Coal Gasification slag, a solid waste produced during the process of coal gasification, has some characteristics such as a large storage vo-lume, high carbon content, weak cementitious reactivity, and heavy metal enrichment, and its large-scale and harmless utilization faces significant challenges. This paper systematically reviews the mineralogical properties of coal gasification slag and the mechanisms influencing its cementitious reactivity enhancement. The study shows that the highly polymerized aluminosilicate glass phase and residual carbon in coal gasification slag are the core factors limiting its reactivity. physical activation through mechanical grinding to destroy the crystal structure and increase the specific surface area, but the role of the effect is limited. chemical activation is mainly through the acid, alkali, salt, organic solvents to depolymerize the aluminosilicate network to release active ions (Al3+, Si4+, Ca2+), but requires precise control of hydration reaction pathways. Thermal activation removes residual carbon and reconstructs crystalline phases through high-temperature treatment, yet faces high energy consumption. Composite activation and bio-mineralization techniques demonstrate synergistic potential, but the current research is insufficient. In the future, it is necessary to develop low-carbon and high-efficiency multi-technology paths from the mineralogical properties of coal gasification slag, overcome bottlenecks in high-dosage applications, and provide theoretical foundations for high-value utilization of coal gasification slag as building mate-rials.
Key words:  coal gasification slag    mineralogy characteristics    cementitious reactivity    excitation mechanism    resource utilization
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  TU526  
基金资助: 国家重点研发计划(2021YFC1910605);河北省自然科学基金(E2020402079);河北省科技重大专项项目(21283804Z);固废资源化利用与节能国家重点实验室开放基金( SWR-2023-007);国家环境保护矿冶资源利用与污染控制重点实验室开放基金(HB202306);河北省建筑工程低碳建造与韧性提升重点实验室基金资助(HKL-LRC-2024-2)
通讯作者:  *黄天勇,博士,北京建筑材料科学研究总院有限公司正高级工程师,博士研究生导师。长期从事预拌砂浆、混凝土及固体废弃物资源化利用研究。hatty555@163.com
王长龙,博士,河北工程大学教授,博士研究生导师。长期从事固废高值利用理论及关键技术研究。baistuwong@139.com   
作者简介:  吴平川,博士,河北工程大学教授,硕士研究生导师。长期从事新型低碳环境生态材料、绿色混凝土研究。
引用本文:    
吴平川, 刘治兵, 黄天勇, 郑永超, 张凯帆, 王长龙, 康旺, 付兴帅, 白云翼, 翟玉新, 刘枫. 煤气化渣胶凝活性激发及机理研究进展[J]. 材料导报, 2025, 39(12): 24030152-9.
WU Pingchuan, LIU Zhibing, HUANG Tianyong, ZHENG Yongchao, ZHANG Kaifan,WANG Changlong, KANG Wang, FU Xingshuai, BAI Yunyi, ZHAI Yuxin, LIU Feng. Research Progress on Excitation and Mechanism of Coal Gasification Slag Cementitious Reactivity. Materials Reports, 2025, 39(12): 24030152-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24030152  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24030152
1 Qi W Y, Han Y J, Duan G, et al. Construction and Building Materials, 2024(425), 135970.
2 Wang Y F, Tang Y G, Li R Q, et al. Science of the Total Environment, 2021, 759(12), 143463.
3 Liu X D, Jin Z W, Jing Y H, et al. Chinese Journal of Chemical Engineering, 2021, 35, 92
4 Li Y T, Wei C, Liu X M, et al. Construction and Building Materials, 2023, 402, 133013.
5 Zhao J H, Zhang X Z, Sheng J C, et al. Journal of Environmental Che-mical Engineering, 2023, 11(6), 111137.
6 Li C C. Mesoporous silica from coal combustion wastes. Ph. D. Thesis, East China University of Science and Technology, China, 2016.
李辰晨. 燃煤固体废弃物制备介孔硅基材料. 博士学位论文, 华东理工大学, 2016.
7 Zhang J P, Zuo J, Ai D W, et al. Journal of Hazardous Materials, 2020, 384, 121347.
8 Liu S, Chen X T, Ai W D, et al. Journal of Cleaner Production, 2019, 212, 1062.
9 Zhu D D, Miao S D, Xue B, et al. Water, Air, & Soil Pollution, 2019, 230(7), 115.
10 Dai G F, Zheng S J, Wang X B, et al. Journal of Environmental Ma-nagement, 2020, 271, 111009.
11 Gao Z, Han X X, Wang G L, et al. Gas Science and Engineering, 2023, 117, 205069.
12 Zhu Y K, Wu J J, Zhang Y X, et al. Separation and Purification Technology, 2024, 330, 125452.
13 Li Z Z, Zhang Y Y, Zhao H Y, et al. Construction and Building Materials, 2019, 213, 265.
14 Qu J S, Zhang J B, Li H Q, et al. Science of the Total Environment, 2021, 801, 149761.
15 Yuan N, Zhao A J, Hu Z K, et al. Chemosphere, 2022, 287, 132227.
16 Chen X D, Kong L X, Bai J, et al. Applied Energy, 2017, 206, 1241.
17 Lv B, Deng X W, Jiao F S, et al. Process Safety and Environmental Protection, 2023(171), 859.
18 Wu T, Gong M, Lester E, et al. Fuel, 2007, 86(7-8), 972.
19 Zhao X L, Zeng C, Mao Y Y, et al. Energy & Fuels, 2010, 24(1), 91.
20 Chang R Q, Zhang J B, Li H Q, et al. Construction and Building Materials, 2024(426), 136164.
21 Wu S Y, Huang S, Wu Y Q, et al. Journal of the Energy Institute, 2015(88), 93.
22 Yang S, Shi L J. Coal Chemical Industry, 2013, 41(4), 29 (in Chinese).
杨帅, 石立军. 煤化工, 2013, 41(4), 29.
23 Li J, Xu X P, Zhang S, et al. Coal Chemical Industry, 2022, 50(5), 74(in Chinese).
李健, 许向平, 张生. 煤化工, 2022, 50(5), 74.
24 Shuai H, Yin H F, Yuan H D, et al. Coal Conversion, 2015, 38(3), 44(in Chinese).
帅航, 尹洪峰, 袁蝴蝶. 煤炭转化, 2015, 38(3), 44.
25 Tian Y C, Wang Y L, Chai H C, et al. Construction and Building Materials, 2024(414), 134864.
26 Ma Z B, Sun Y J, Duan S Y, et al. Construction and Building Materials, 2024(420), 135581.
27 Sheng Y J. Study on phsicochemical characteristics of slag form entrained-flow coal gasification. Master’s Thesis, East China University of Science and Technology, China, 2017 (in Chinese).
盛羽静. 气流床气化灰渣的理化特性研究. 硕士学位论文, 华东理工大学, 2017.
28 Zhang Y F, Qu J S, Zhang J B, et al. Sci Total Environ, 2024, 926, 172011.
29 Pan C C, Liang Q F, Guo X L, et al. Energy & Fuels, 2016, 30, 1487.
30 Wu Y, Zhao S Y, Li B. Coal Engineering, 2017, 49(3), 115(in Chinese).
吴阳, 赵世永, 李博. 煤炭工程, 2017, 49(3), 115.
31 Saedi A, Jamshidi-Zanjani A, Khodadadi Darban A. Journal of Environmental Management, 2020, 270, 110881.
32 Kriskova L, Pontikes Y, Cizer Ö, et al. Cement and Concrete Research, 2012, 42, 778.
33 Yao G, Liu Q, Wang J X, et al. Journal of Cleaner Production, 2019, 217, 12.
34 Guo Z H, Yang W, Zhu X L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3567 (in Chinese).
郭照恒, 杨文, 祝小靓, 等. 硅酸盐通报, 2020, 39(11), 3567.
35 Wu F, Li H, Yang K. Coatings, 2021, 11(8), 902.
36 Li K L, Teng Y H, Wang K R et al. Materials Research Express, 2023, 10(9), 095301.
37 Zhu M B, Xie G, Liu L, et al. Materials, 2022, 15(17), 6033.
38 Lv X T. Study on the influence of activator on the properties of coal gasification slag micro-powder cementitious system. Master’s Thesis, Inner Mongolia University of Science & Technology, China, 2019(in Chinese).
吕学涛. 激发剂对煤气化渣微粉胶凝体系性能的影响研究, 硕士学位论文, 内蒙古科技大学, 2019.
39 Yao G, Cui T, Zhang J K, et al. Advanced Powder Technology, 2020, 31(11), 4500.
40 Mucsi G. Epitoanyag-Journal of Silicate Based and Composite Materials, 2016, 68(2), 56.
41 Palomo A, Krivenko P, Garcia-Lodeiro I, et al. Materiales de Construcción, 2014, 64(315), 1.
42 Yin B, Kang T H, Kang J T, et al. International Journal of Concrete Structures and Materials, 2018, 12(1), 13.
43 Sun B B, Ye G, Schutter G D. Construction and Building Materials, 2022, 326, 126843.
44 Xi Y Y, Shen Y, Liu J H, et al. Materials Reports, 2021, 35(Z2), 262 (in Chinese).
席雅允, 沈玉, 刘娟红, 等. 材料导报, 2021, 35(Z2), 262.
45 Li Z Z, Guan Y, Zhao H Y, et al. Journal of Materials Science and Engineering, 2019, 37(1), 119 (in Chinese).
李祖仲, 关羽, 赵红艳, 等. 材料科学与工程学报, 2019, 37(1), 119.
46 Duxson P, Lukey G C, Separovic F, et al. Industrial & Engineering Chemistry Research, 2005, 44, 832.
47 He Y J, Zhao X G, Lu L N, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2011, 26, 770.
48 Snellings R. Jantzen. Journal of the American Ceramic Society, 2013, 96(8), 2467.
49 Chen Y C, Zhou X, Wan S, et al. Construction and Building Materials, 2019, 211, 646.
50 Lee Y, Bang J J, Kang S. Journal of Nanoscience Nanotechnology, 2019, 19, 2193.
51 Du T L, Liu Y, Yu Y Y, et al. Journal of Highway and Transportation Research and Development, 2021, 38(1), 41(in Chinese).
杜天玲, 刘英, 于咏妍, 等. 公路交通科技, 2021, 38(1), 41.
52 Zhao Y L. Study on the formation of cementitious material and mechanism of hydration by water glass actvation of fine slag. Master’s Thesis, Xi’an Unniversity of Architecture and Technology, China, 2007 (in Chinese).
赵永林. 水玻璃激发矿渣超细粉胶凝材料的形成及水化机理的研究. 硕士学位论文, 西安建筑科技大学, 2017.
53 Xin J, Liu L, Jiang Q, et al. Construction and Building Materials, 2022, 322, 125936.
54 Qu J S, Zhang J B, Li H Q, et al. Chemical Engineering Journal, 2024, 479, 147771.
55 Zhang J Y, Zuo J, Jiang Y S, et al. Solid State Sciences, 2020, 100, 106084.
56 He S C, Li T P, Shen T T, et al. Process Safety and Environmental Protection, 2023, 173, 249.
57 Du M J, Huang J J, Liu Z Y, et al. Fuel, 2018, 224, 178.
58 Louati S, Baklouti S, Samet B. Applied Clay Science, 2016, 132, 571.
59 Wang Y S, Dai J G, Ding Z, et al. Materials Letters, 2017, 190, 209.
60 Cao D G, Su D G, Lu B, et al. Journal of chinese Ceramic Society, 2005, 33(11), 1385.
61 Fu J Y, Jones A M, Bligh M W, et al. Cement and Concrete Research, 2020, 135, 106110.
62 Rashad A M, Bai Y, P. Basheer A M, et al. Cement and Concrete Composites, 2013, 37(1), 20.
63 Jeon D, Yum W S, Jeong Y, et al. Cement and Concrete Research, 2018, 111, 147.
64 Li C, Zhu H B, Wu M X, et al. Cement and Concrete Research, 2017, 92, 98.
65 Wu J L, Jun k P, Yu C G, et al. Journal of Materials in Civil Engineering, 2021, 33, 04021235.
66 Yang P, Liu L, Suo Y L, et al. Construction and Building Materials, 2023, 401, 132973.
67 Yang P, Suo Y L, Liu L, et al. Journal of Building Engineering, 2022, 62, 105318.
68 Fu J Y, Bligh M W, Shikhov I, et al. Cement and Concrete Research, 2021, 150, 106609.
69 Qu H S, Suo Y L, Liu L, et al. Journal of China Coal Society, 2022, 47(5), 1958(in Chinese).
屈慧升, 索永录, 刘浪, 等. 煤炭学报, 2022, 47(5), 1958.
70 Xin J, Liu L, Xu L, et al. Science of the Total Environment, 2022, 830, 154766.
71 Wu F, Li H. Thermal Science, 2021, 25(6A), 4161.
72 Zhao Q X, Lv T, Liang H, et al. Construction and Building Materials, 2023, 383, 131245.
73 Steger L, Blotevogel S, Frouin L, et al. Cement and Concrete Research, 2021, 149, 131245.
74 Zhang Y R, Kong X M, Lu Z C, et al. Cement and Concrete Research, 2016, 87, 64.
75 Yang S G, Wang J F, Cui S P, et al. Construction and Building Materials, 2017, 131, 655.
76 Gartner E, Myers D. Journal of the American Ceramic Society, 1993, 76(6), 1521.
77 Han J G, Wang K J, Shi J Y, et al. Construction and Building Materials, 2015, 93, 457.
78 Ramachandran V. S. Cement and Concrete Research, 1973, 3, 41.
79 Heinz D, Göbel M, Hilbig H, et al. Cement and Concrete Research, 2010, 40, 392.
80 He J H, Long G C, Ma C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8, 10053.
81 Zhang M, Fang K Z, Wang D M, et al. Journal of Mining Science and Technology, 2021, 6(6), 737 (in Chinese).
张明, 房奎圳, 王栋民, 等. 矿业科学学报, 2021, 6(6), 737.
82 Luo Z T, Ma B G, Li X G, et al. Journal of China University of Mining and Technology, 2010, 39(2), 275.
83 Zeyad A M, Tayeh B A, Adesina A, et al. Cleaner Materials, 2022, 3, 10042.
84 Liu J, Wang D M. Advances in Materials Science and Engineering, 2017, 2017, 1.
85 Li Z, Ren Q Q, Liang C, et al. Energy, 2023, 272, 127190.
86 Luo F, Jiang Y S, Wei C D. Construction and Building Materials, 2021, 269, 121259.
87 Liu Z, Wang J X, Jiang Q K, et al. Journal of Cleaner Production, 2020, 275(1), 1184.
88 Feng C, Yao Y, Li Y, et al. Clean Technologies and Environmental Policy, 2013, 16, 667.
89 Zhao S L, Duan Y F, Lu J C, et al. Fuel, 2018, 225, 490.
90 Han Y J, Qi W Y, Pang H T, et al. Construction and Building Materials, 2024, 420, 135591.
91 Liu Y Q. Study on synergistic improvement of cementitious properties of circulating fluidized bed fly ash by microbial mineralization and activation. Master’s Thesis, Taiyuan University of Technology, China, 2022(in Chinese).
刘云奇. 微生物矿化和活化作用协同提高循环流化床粉煤灰胶凝性能研究 硕士学位论文, 太原理工大学, 2022.
92 Qian C X, Zhang X, Yi H H. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2363 (in Chinese).
钱春香, 张霄, 伊海赫. 硅酸盐通报, 2020, 39(8), 2363.
93 Zhang W Y, Shi F F, Duan X H, et al. Construction and Building Materials, 2024, 423, 135675.
[1] 陈芳, 冯奕程, 吴佳育, 关博文, 房建宏, 温小栋, 李超恩. 市政污泥陶粒制备及资源化利用研究进展[J]. 材料导报, 2025, 39(3): 23120099-9.
[2] 张刘阳, 陈潇, 吕国明, 王本仁, 周明凯. 钢渣特性随粒级分布的规律研究[J]. 材料导报, 2025, 39(3): 24010040-8.
[3] 王郎郎, 张韶, 费政富, 宁平, 王学谦, 刘敬业, 谢怡冰, 马懿星, 王华. 黄磷生产中固废处置与资源化利用研究进展[J]. 材料导报, 2024, 38(22): 23080072-8.
[4] 李宇, 王建敏, 张弦, 欧阳顺利. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, 37(23): 22040354-12.
[5] 王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
[6] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[7] 骆燕苏, 李凯, 王驰, 王飞, 宋辛, 包加成, 宁平, 孙鑫. 矿浆法同时脱硫脱硝的研究进展与展望[J]. 材料导报, 2022, 36(9): 20080316-7.
[8] 王雪, 王恒, 王强. 我国锂渣资源化利用研究进展[J]. 材料导报, 2022, 36(24): 22040195-11.
[9] 席雅允, 沈玉, 刘娟红, 吴瑞东, 许鹏玉. 化学激发对煤气化渣-水泥体系抗压强度影响机理研究[J]. 材料导报, 2021, 35(z2): 262-267.
[10] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[11] 李小明, 阮锦榜, 臧旭媛, 张馨艺, 贺芸, 张连增, 邢相栋. 晶体硅金刚石线切割废料资源化利用研究进展[J]. 材料导报, 2021, 35(23): 23229-23234.
[12] 王爱国,刘朋,孙道胜,刘开伟,方立安,曹菊芳. 煅烧煤矸石粉体材料活性评价方法的研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1903-1909.
[13] 刘欢, 华中胜, 何几文, 唐泽韬, 张伟伟, 吕辉鸿. 废弃氧化铟锡中铟的回收技术综述[J]. 《材料导报》期刊社, 2018, 32(11): 1916-1923.
[14] 李小明, 沈苗, 王翀, 崔雅茹, 赵俊学. 镍渣资源化利用现状及发展趋势分析*[J]. 《材料导报》期刊社, 2017, 31(5): 100-105.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[8] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[9] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[10] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed