Research Progress on Excitation and Mechanism of Coal Gasification Slag Cementitious Reactivity
WU Pingchuan1,2, LIU Zhibing1,2, HUANG Tianyong1,*, ZHENG Yongchao1, ZHANG Kaifan3,WANG Changlong1,2,4,*, KANG Wang1, FU Xingshuai2, BAI Yunyi2, ZHAI Yuxin5, LIU Feng6
1 State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing 100041, China 2 Hebei Province Key Laboratory for Low-Carbon Construction and Resilience Enhancement of Construction Engineering, School of Civil Engineering, Hebei University of Engineering, Handan 056038, Hebei, China 3 School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000,Jiangxi, China 4 State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, China 5 China Railway Construction Group Co., Ltd., Beijing 100040, China 6 Construction Development Co., Ltd., China Railway Construction Group, Beijing 100070, China
Abstract: Coal Gasification slag, a solid waste produced during the process of coal gasification, has some characteristics such as a large storage vo-lume, high carbon content, weak cementitious reactivity, and heavy metal enrichment, and its large-scale and harmless utilization faces significant challenges. This paper systematically reviews the mineralogical properties of coal gasification slag and the mechanisms influencing its cementitious reactivity enhancement. The study shows that the highly polymerized aluminosilicate glass phase and residual carbon in coal gasification slag are the core factors limiting its reactivity. physical activation through mechanical grinding to destroy the crystal structure and increase the specific surface area, but the role of the effect is limited. chemical activation is mainly through the acid, alkali, salt, organic solvents to depolymerize the aluminosilicate network to release active ions (Al3+, Si4+, Ca2+), but requires precise control of hydration reaction pathways. Thermal activation removes residual carbon and reconstructs crystalline phases through high-temperature treatment, yet faces high energy consumption. Composite activation and bio-mineralization techniques demonstrate synergistic potential, but the current research is insufficient. In the future, it is necessary to develop low-carbon and high-efficiency multi-technology paths from the mineralogical properties of coal gasification slag, overcome bottlenecks in high-dosage applications, and provide theoretical foundations for high-value utilization of coal gasification slag as building mate-rials.
1 Qi W Y, Han Y J, Duan G, et al. Construction and Building Materials, 2024(425), 135970. 2 Wang Y F, Tang Y G, Li R Q, et al. Science of the Total Environment, 2021, 759(12), 143463. 3 Liu X D, Jin Z W, Jing Y H, et al. Chinese Journal of Chemical Engineering, 2021, 35, 92 4 Li Y T, Wei C, Liu X M, et al. Construction and Building Materials, 2023, 402, 133013. 5 Zhao J H, Zhang X Z, Sheng J C, et al. Journal of Environmental Che-mical Engineering, 2023, 11(6), 111137. 6 Li C C. Mesoporous silica from coal combustion wastes. Ph. D. Thesis, East China University of Science and Technology, China, 2016. 李辰晨. 燃煤固体废弃物制备介孔硅基材料. 博士学位论文, 华东理工大学, 2016. 7 Zhang J P, Zuo J, Ai D W, et al. Journal of Hazardous Materials, 2020, 384, 121347. 8 Liu S, Chen X T, Ai W D, et al. Journal of Cleaner Production, 2019, 212, 1062. 9 Zhu D D, Miao S D, Xue B, et al. Water, Air, & Soil Pollution, 2019, 230(7), 115. 10 Dai G F, Zheng S J, Wang X B, et al. Journal of Environmental Ma-nagement, 2020, 271, 111009. 11 Gao Z, Han X X, Wang G L, et al. Gas Science and Engineering, 2023, 117, 205069. 12 Zhu Y K, Wu J J, Zhang Y X, et al. Separation and Purification Technology, 2024, 330, 125452. 13 Li Z Z, Zhang Y Y, Zhao H Y, et al. Construction and Building Materials, 2019, 213, 265. 14 Qu J S, Zhang J B, Li H Q, et al. Science of the Total Environment, 2021, 801, 149761. 15 Yuan N, Zhao A J, Hu Z K, et al. Chemosphere, 2022, 287, 132227. 16 Chen X D, Kong L X, Bai J, et al. Applied Energy, 2017, 206, 1241. 17 Lv B, Deng X W, Jiao F S, et al. Process Safety and Environmental Protection, 2023(171), 859. 18 Wu T, Gong M, Lester E, et al. Fuel, 2007, 86(7-8), 972. 19 Zhao X L, Zeng C, Mao Y Y, et al. Energy & Fuels, 2010, 24(1), 91. 20 Chang R Q, Zhang J B, Li H Q, et al. Construction and Building Materials, 2024(426), 136164. 21 Wu S Y, Huang S, Wu Y Q, et al. Journal of the Energy Institute, 2015(88), 93. 22 Yang S, Shi L J. Coal Chemical Industry, 2013, 41(4), 29 (in Chinese). 杨帅, 石立军. 煤化工, 2013, 41(4), 29. 23 Li J, Xu X P, Zhang S, et al. Coal Chemical Industry, 2022, 50(5), 74(in Chinese). 李健, 许向平, 张生. 煤化工, 2022, 50(5), 74. 24 Shuai H, Yin H F, Yuan H D, et al. Coal Conversion, 2015, 38(3), 44(in Chinese). 帅航, 尹洪峰, 袁蝴蝶. 煤炭转化, 2015, 38(3), 44. 25 Tian Y C, Wang Y L, Chai H C, et al. Construction and Building Materials, 2024(414), 134864. 26 Ma Z B, Sun Y J, Duan S Y, et al. Construction and Building Materials, 2024(420), 135581. 27 Sheng Y J. Study on phsicochemical characteristics of slag form entrained-flow coal gasification. Master’s Thesis, East China University of Science and Technology, China, 2017 (in Chinese). 盛羽静. 气流床气化灰渣的理化特性研究. 硕士学位论文, 华东理工大学, 2017. 28 Zhang Y F, Qu J S, Zhang J B, et al. Sci Total Environ, 2024, 926, 172011. 29 Pan C C, Liang Q F, Guo X L, et al. Energy & Fuels, 2016, 30, 1487. 30 Wu Y, Zhao S Y, Li B. Coal Engineering, 2017, 49(3), 115(in Chinese). 吴阳, 赵世永, 李博. 煤炭工程, 2017, 49(3), 115. 31 Saedi A, Jamshidi-Zanjani A, Khodadadi Darban A. Journal of Environmental Management, 2020, 270, 110881. 32 Kriskova L, Pontikes Y, Cizer Ö, et al. Cement and Concrete Research, 2012, 42, 778. 33 Yao G, Liu Q, Wang J X, et al. Journal of Cleaner Production, 2019, 217, 12. 34 Guo Z H, Yang W, Zhu X L, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 3567 (in Chinese). 郭照恒, 杨文, 祝小靓, 等. 硅酸盐通报, 2020, 39(11), 3567. 35 Wu F, Li H, Yang K. Coatings, 2021, 11(8), 902. 36 Li K L, Teng Y H, Wang K R et al. Materials Research Express, 2023, 10(9), 095301. 37 Zhu M B, Xie G, Liu L, et al. Materials, 2022, 15(17), 6033. 38 Lv X T. Study on the influence of activator on the properties of coal gasification slag micro-powder cementitious system. Master’s Thesis, Inner Mongolia University of Science & Technology, China, 2019(in Chinese). 吕学涛. 激发剂对煤气化渣微粉胶凝体系性能的影响研究, 硕士学位论文, 内蒙古科技大学, 2019. 39 Yao G, Cui T, Zhang J K, et al. Advanced Powder Technology, 2020, 31(11), 4500. 40 Mucsi G. Epitoanyag-Journal of Silicate Based and Composite Materials, 2016, 68(2), 56. 41 Palomo A, Krivenko P, Garcia-Lodeiro I, et al. Materiales de Construcción, 2014, 64(315), 1. 42 Yin B, Kang T H, Kang J T, et al. International Journal of Concrete Structures and Materials, 2018, 12(1), 13. 43 Sun B B, Ye G, Schutter G D. Construction and Building Materials, 2022, 326, 126843. 44 Xi Y Y, Shen Y, Liu J H, et al. Materials Reports, 2021, 35(Z2), 262 (in Chinese). 席雅允, 沈玉, 刘娟红, 等. 材料导报, 2021, 35(Z2), 262. 45 Li Z Z, Guan Y, Zhao H Y, et al. Journal of Materials Science and Engineering, 2019, 37(1), 119 (in Chinese). 李祖仲, 关羽, 赵红艳, 等. 材料科学与工程学报, 2019, 37(1), 119. 46 Duxson P, Lukey G C, Separovic F, et al. Industrial & Engineering Chemistry Research, 2005, 44, 832. 47 He Y J, Zhao X G, Lu L N, et al. Journal of Wuhan University of Technology-Mater. Sci. Ed. , 2011, 26, 770. 48 Snellings R. Jantzen. Journal of the American Ceramic Society, 2013, 96(8), 2467. 49 Chen Y C, Zhou X, Wan S, et al. Construction and Building Materials, 2019, 211, 646. 50 Lee Y, Bang J J, Kang S. Journal of Nanoscience Nanotechnology, 2019, 19, 2193. 51 Du T L, Liu Y, Yu Y Y, et al. Journal of Highway and Transportation Research and Development, 2021, 38(1), 41(in Chinese). 杜天玲, 刘英, 于咏妍, 等. 公路交通科技, 2021, 38(1), 41. 52 Zhao Y L. Study on the formation of cementitious material and mechanism of hydration by water glass actvation of fine slag. Master’s Thesis, Xi’an Unniversity of Architecture and Technology, China, 2007 (in Chinese). 赵永林. 水玻璃激发矿渣超细粉胶凝材料的形成及水化机理的研究. 硕士学位论文, 西安建筑科技大学, 2017. 53 Xin J, Liu L, Jiang Q, et al. Construction and Building Materials, 2022, 322, 125936. 54 Qu J S, Zhang J B, Li H Q, et al. Chemical Engineering Journal, 2024, 479, 147771. 55 Zhang J Y, Zuo J, Jiang Y S, et al. Solid State Sciences, 2020, 100, 106084. 56 He S C, Li T P, Shen T T, et al. Process Safety and Environmental Protection, 2023, 173, 249. 57 Du M J, Huang J J, Liu Z Y, et al. Fuel, 2018, 224, 178. 58 Louati S, Baklouti S, Samet B. Applied Clay Science, 2016, 132, 571. 59 Wang Y S, Dai J G, Ding Z, et al. Materials Letters, 2017, 190, 209. 60 Cao D G, Su D G, Lu B, et al. Journal of chinese Ceramic Society, 2005, 33(11), 1385. 61 Fu J Y, Jones A M, Bligh M W, et al. Cement and Concrete Research, 2020, 135, 106110. 62 Rashad A M, Bai Y, P. Basheer A M, et al. Cement and Concrete Composites, 2013, 37(1), 20. 63 Jeon D, Yum W S, Jeong Y, et al. Cement and Concrete Research, 2018, 111, 147. 64 Li C, Zhu H B, Wu M X, et al. Cement and Concrete Research, 2017, 92, 98. 65 Wu J L, Jun k P, Yu C G, et al. Journal of Materials in Civil Engineering, 2021, 33, 04021235. 66 Yang P, Liu L, Suo Y L, et al. Construction and Building Materials, 2023, 401, 132973. 67 Yang P, Suo Y L, Liu L, et al. Journal of Building Engineering, 2022, 62, 105318. 68 Fu J Y, Bligh M W, Shikhov I, et al. Cement and Concrete Research, 2021, 150, 106609. 69 Qu H S, Suo Y L, Liu L, et al. Journal of China Coal Society, 2022, 47(5), 1958(in Chinese). 屈慧升, 索永录, 刘浪, 等. 煤炭学报, 2022, 47(5), 1958. 70 Xin J, Liu L, Xu L, et al. Science of the Total Environment, 2022, 830, 154766. 71 Wu F, Li H. Thermal Science, 2021, 25(6A), 4161. 72 Zhao Q X, Lv T, Liang H, et al. Construction and Building Materials, 2023, 383, 131245. 73 Steger L, Blotevogel S, Frouin L, et al. Cement and Concrete Research, 2021, 149, 131245. 74 Zhang Y R, Kong X M, Lu Z C, et al. Cement and Concrete Research, 2016, 87, 64. 75 Yang S G, Wang J F, Cui S P, et al. Construction and Building Materials, 2017, 131, 655. 76 Gartner E, Myers D. Journal of the American Ceramic Society, 1993, 76(6), 1521. 77 Han J G, Wang K J, Shi J Y, et al. Construction and Building Materials, 2015, 93, 457. 78 Ramachandran V. S. Cement and Concrete Research, 1973, 3, 41. 79 Heinz D, Göbel M, Hilbig H, et al. Cement and Concrete Research, 2010, 40, 392. 80 He J H, Long G C, Ma C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8, 10053. 81 Zhang M, Fang K Z, Wang D M, et al. Journal of Mining Science and Technology, 2021, 6(6), 737 (in Chinese). 张明, 房奎圳, 王栋民, 等. 矿业科学学报, 2021, 6(6), 737. 82 Luo Z T, Ma B G, Li X G, et al. Journal of China University of Mining and Technology, 2010, 39(2), 275. 83 Zeyad A M, Tayeh B A, Adesina A, et al. Cleaner Materials, 2022, 3, 10042. 84 Liu J, Wang D M. Advances in Materials Science and Engineering, 2017, 2017, 1. 85 Li Z, Ren Q Q, Liang C, et al. Energy, 2023, 272, 127190. 86 Luo F, Jiang Y S, Wei C D. Construction and Building Materials, 2021, 269, 121259. 87 Liu Z, Wang J X, Jiang Q K, et al. Journal of Cleaner Production, 2020, 275(1), 1184. 88 Feng C, Yao Y, Li Y, et al. Clean Technologies and Environmental Policy, 2013, 16, 667. 89 Zhao S L, Duan Y F, Lu J C, et al. Fuel, 2018, 225, 490. 90 Han Y J, Qi W Y, Pang H T, et al. Construction and Building Materials, 2024, 420, 135591. 91 Liu Y Q. Study on synergistic improvement of cementitious properties of circulating fluidized bed fly ash by microbial mineralization and activation. Master’s Thesis, Taiyuan University of Technology, China, 2022(in Chinese). 刘云奇. 微生物矿化和活化作用协同提高循环流化床粉煤灰胶凝性能研究 硕士学位论文, 太原理工大学, 2022. 92 Qian C X, Zhang X, Yi H H. Bulletin of the Chinese Ceramic Society, 2020, 39(8), 2363 (in Chinese). 钱春香, 张霄, 伊海赫. 硅酸盐通报, 2020, 39(8), 2363. 93 Zhang W Y, Shi F F, Duan X H, et al. Construction and Building Materials, 2024, 423, 135675.