Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 24010040-8    https://doi.org/10.11896/cldb.24010040
  无机非金属及其复合材料 |
钢渣特性随粒级分布的规律研究
张刘阳1, 陈潇1,2,*, 吕国明3, 王本仁3, 周明凯1,2
1 武汉理工大学材料科学与工程学院,武汉 430070
2 武汉理工大学硅酸盐国家重点实验室,武汉 430070
3 山西建龙实业有限公司,山西 运城 044107
Study on the Law of Steel Slag Characteristics with Particle Size Distribution
ZHANG Liuyang1, CHEN Xiao1,2,*, LYU Guoming3, WANG Benren3, ZHOU Mingkai1,2
1 School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
2 State Key Laboratory of Silicate, Wuhan University of Technology, Wuhan 430070, China
3 Shanxi Jianlong Industrial Co., Ltd., Yuncheng 044107, Shanxi, China
下载:  全 文 ( PDF ) ( 10157KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 易磨性差、安定性不良、胶凝活性低是制约钢渣在建材领域资源化利用的主要问题。本工作将不同预处理的钢渣分级成0~0.6 mm、0.6~2.36 mm、2.36~4.75 mm、4.75~9.5 mm粒级,研究了不同粒级钢渣的化学成分、矿物组成、易磨性、安定性、胶凝活性及其之间的相互关系。结果表明:钢渣易磨性随钢渣粒级的增加而变差,这是因为难磨物相钙铁石(Ca2Fe2O5)、RO相(MgO·2FeO)含量随粒级的增加而增加,细粒级钢渣f-CaO含量、沸煮膨胀值、压蒸粉化率均低于粗粒级钢渣,陈化钢渣以及热闷钢渣中0~0.6 mm粒级钢渣赋存f-CaO含量最少。钢渣胶凝活性随粒级的增加呈现出先增大后减小的趋势,其中2.36~4.75 mm粒级钢渣最优,钢渣中的C3S、C2S含量提高有利于钢渣胶凝活性的增长。不同粒级钢渣化学成分、矿物组成与钢渣易磨性、安定性、胶凝活性之间具有良好的线性相关性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张刘阳
陈潇
吕国明
王本仁
周明凯
关键词:  钢渣粒级  化学成分  矿物组成  易磨性  安定性  胶凝活性    
Abstract: Poor grindability, poor stability and low cementitious activity are the main problems restricting the resource utilization of steel slag in the field of building materials. In this work, the steel slag with different pretreatments was graded into 0—0.6 mm, 0.6—2.36 mm, 2.36—4.75 mm and 4.75—9.5 mm fractions. The chemical composition, mineral composition, grindability, stability, cementitious activity and the relationship between them were studied. The results showed that the grindability of steel slag becomes worse with the increase of steel slag particle size. This was because the content of calcium iron stone (Ca2Fe2O5) and RO phase (MgO·2FeO) increased with the increase of particle size. The f-CaO content, boiling expansion value and autoclave pulverization rate of fine-grained steel slag were lower than those of coarse-grained steel slag. The f-CaO content of 0—0.6 mm steel slag in aged steel slag and hot stuffy steel slag was the least. The cementitious activity of steel slag first increased and then decreased with the increase of particle size, among which 2.36—4.75 mm particle size steel slag was the best. The increased of C3S and C2S content in steel slag was beneficial to the growth of cementitious activity of steel slag. There was a good linear correlation between the chemical composition and mineral composition of steel slag with different particle sizes and the grindability, stability and cementitious activity of steel slag.
Key words:  steel slag particle size    chemical composition    mineral composition    grindability    stability    gelling activity
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TU521  
基金资助: 山西省重点研发项目(202202090301019);国家自然科学基金(52272025)
通讯作者:  *陈潇,武汉理工大学硅酸盐建筑材料国家重点实验室教授、全国煤基固废综合利用专家委员会副主任委员、中国硅酸盐学会固废分会委员、中国土木工程学会混凝土及预应力混凝土分会委员、中国固废资源化智库成员。主要从事工业固废资源化利用、生态道路工程材料、高性能混凝土等领域的理论研究、技术开发及工程应用相关工作。chenxiao1981@whut.edu.cn   
作者简介:  张刘阳,武汉理工大学材料科学与工程学院硕士研究生,在陈潇教授的指导下进行研究。目前主要研究领域为工业固体废弃物资源化利用。
引用本文:    
张刘阳, 陈潇, 吕国明, 王本仁, 周明凯. 钢渣特性随粒级分布的规律研究[J]. 材料导报, 2025, 39(3): 24010040-8.
ZHANG Liuyang, CHEN Xiao, LYU Guoming, WANG Benren, ZHOU Mingkai. Study on the Law of Steel Slag Characteristics with Particle Size Distribution. Materials Reports, 2025, 39(3): 24010040-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.24010040  或          http://www.mater-rep.com/CN/Y2025/V39/I3/24010040
1 Ren X, Wang H G, Wu Y D, et al. Environmental Engineering, 2022, 40(8), 220 (in Chinese).
任旭, 王会刚, 吴跃东, 等. 环境工程, 2022, 40(8), 220.
2 Wang J F, Fu H Y, Yan X T, et al. China Nonferrous Metallurgy, 2021, 50(6), 77 (in Chinese).
王吉凤, 付恒毅, 闫晓彤, 等. 中国有色冶金, 2021, 50(6), 77.
3 Liu J Z, Yu B, Wang Q, et al. Journal of Cleaner Production, 2020, 269, 121733.
4 Wang L, Bu X Z, Chen W, et al. Mining Research and Development, 2022, 42(11), 48 (in Chinese).
王亮, 卜显忠, 陈伟, 等. 矿业研究与开发, 2022, 42(11), 48.
5 Cui X W, Ni W, Ren C. Chinese Journal of Material Research, 2017, 31(9), 687 (in Chinese).
崔孝炜, 倪文, 任超. 材料研究学报, 2017, 31(9), 687.
6 Zhou L B, Chen P, Hu C, et al. Bulletin of the Chinese Ceramic Society, 2023, 42(8), 2837 (in Chinese).
周丽波, 陈平, 胡成, 等. 硅酸盐通报, 2023, 42(8), 2837.
7 Zhao X R, Sheng Y P, Lv H L, et al. Construction and Building Materials, 2022, 315, 125655.
8 Ye Y, Wu S P, Li C, et al. Materials, 2019, 12(14), 2322.
9 Huang W, Zhou M H, Yan X, et al. Bulletin of the Chinese Ceramic Society, 2023, 42 (1), 196 (in Chinese).
黄伟, 周梦辉, 闫旭, 等. 硅酸盐通报, 2023, 42(1), 196.
10 Wu L S, Mei H Q, Liu K L, et al. JOM, 2023, 75, 1169.
11 Han M, Zhang L L, Lu Z F, et al. Environmental Engineering, 2022, 40(2), 235 (in Chinese).
韩檬, 张亮亮, 卢忠飞, 等. 环境工程, 2022, 40(2), 235.
12 Hou X K, Liu Z S, Yang H Y, et al. Journal of Building Materials, 2017, 20(3), 385 (in Chinese).
侯新凯, 刘柱燊, 杨洪艺, 等. 建筑材料学报, 2017, 20(3), 385.
13 Papayianni I, Anastasiou E. Cement and Concrete Composites, 2012, 34(3), 400.
14 He T S, Li Z B, Zhao S Y, et al. Construction and Building Materials, 2020, 270, 121445.
15 Ma X W, Wang Z Y. Advances in Materials Science and Engineering, 2013, 2013(2), 918294.
16 Cui X W, Leng X Y, Nan N, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(12), 3821 (in Chinese).
崔孝炜, 冷欣燕, 南宁, 等. 硅酸盐通报, 2018, 37(12), 3821.
17 Hou G H, Li W F, Guo W, et al. Journal of the Chinese Ceramic Society, 2008(4), 436 (in Chinese).
侯贵华, 李伟峰, 郭伟, 等. 硅酸盐学报, 2008(4), 436.
18 Zhang T S. Optimized matching of cement clinker and auxiliary cementitious materials doctoral dissertation. Ph. D. Thesis, South China University of Technology, China, 2012 (in Chinese).
张同生. 水泥熟料与辅助性胶凝材料的优化匹配. 博士学位论文, 华南理工大学, 2012.
19 Su Y, Liu S X, Xu P A, et al. Multipurpose Utilization of Mineral Resources, 2022(3), 95.
苏严, 刘淑贤, 徐平安, 等. 矿产综合利用, 2022(3), 95.
20 Taylor H F W. Cement chemistry (2nd Ed), London:Thomas Telford Services Press, UK, 1997, PP. 272.
21 Zhang C H, Liao J L, Ju J T, et al. Journal of Iron and Steel Research, 2013, 25(7), 1 (in Chinese).
张朝晖, 廖杰龙, 巨建涛, 等. 钢铁研究学报, 2013, 25(7), 1.
22 Yan F, Huang X M, Guo R X, et al. Iron and Steel, 2022, 57(10), 30 (in Chinese).
颜峰, 黄小明, 郭荣鑫, 等. 钢铁, 2022, 57(10), 30.
23 Song Q, Guo M Z, Wang L, et al. Resources Conservation and Recycling, 2021, 173, 105740.
24 Li Y D, Gu K P, Xiang J Y, et al. ISIJ International, 2022, 62(11), 2197.
25 Lun Y X, Zhou M K, Cai X. Journal of Building Materials, 2009, 12(2), 244 (in Chinese).
伦云霞, 周明凯, 蔡肖. 建筑材料学报, 2009, 12(2), 244.
26 Xu F, Chen Z C, Zhu J, et al. Concrete, 2012(9), 59 (in Chinese).
徐方, 陈志超, 朱婧, 等. 混凝土, 2012(9), 59.
27 Xue Y, Chen T Y, Zhao X, et al. Materials Today Communications, 2023, 35, 105835.
28 Zhang W, Hao X S, Wei C, et al. Construction and Building Materials, 2022, 351, 128925.
29 Yan J J, Wu S P, Yang C, et al. Construction and Building Materials, 2022, 350, 128926.
30 Wu L S, Liu K L, Rao L R, et al. Construction and Building Materials, 2021, 300, 124287.
31 Xie Z C, Wang B Y, Jiang Z W. Journal of Building Materials, 2022, 25(10), 1077 (in Chinese).
谢智超, 汪保印, 蒋正武. 建筑材料学报, 2022, 25(10), 1077.
32 Wang J F, Chang L, Wang Y, et al. Materials Reports, 2023, 37(11), 119 (in Chinese).
王剑锋, 常磊, 王艳, 等. 材料导报, 2023, 37(11), 119.
[1] 伍勇华, 匡玉峰, 易昂, 何娟, 原毅冰. 钢渣粉低液固比固碳工艺及固碳钢渣粉对水泥基材料性能的影响[J]. 材料导报, 2024, 38(13): 23060132-8.
[2] 田晓, 刘德来, 徐慧, 秦承鹏, 李太江, 李益民, 杨百勋. 620 ℃高效火电机组用CB2铸钢件材质特性与质量状态分析[J]. 材料导报, 2023, 37(14): 21090184-8.
[3] 王剑锋, 常磊, 王艳, 刘辉, 岳德钰, 崔素萍, 兰明章. 钢渣胶凝活性与体积稳定性优化研究现状[J]. 材料导报, 2023, 37(11): 21100032-9.
[4] 仉建波, 李京桉, 彭远祎, 夏兴川, 刘畅, 丁俭, 陈学广, 刘永长. ATI 718Plus高温合金微观组织与性能研究进展[J]. 材料导报, 2022, 36(4): 20050167-8.
[5] 商怀帅, 邵姝文, 冯海暴, 李永升. NPR钢筋力学性能试验研究[J]. 材料导报, 2022, 36(10): 21010164-7.
[6] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[7] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[8] 王亚丽, 姚羽涵, 崔素萍, 王卉, 王为. 高炉矿渣的组成和结构对其在碱性环境中早期水化特性的影响[J]. 材料导报, 2018, 32(22): 3989-3994.
[9] 文新理, 章清泉, 陈列. 650 ℃第三代超超临界锅炉管候选钢种的化学成分研究现状[J]. 材料导报, 2018, 32(13): 2167-2175.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed