Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24080183-7    https://doi.org/10.11896/cldb.24080183
  无机非金属及其复合材料 |
超高韧性矿渣-甘蔗渣灰基地聚物复合材料的流变特性研究
李静1,2,*, 焦之森1, 张灵1, 黄莹1,2, 陈正1,2
1 广西大学土木建筑工程学院,南宁 530004
2 省部共建特色金属材料与组合结构全寿命安全国家重点实验室,南宁 530004
Rheological Characteristics Study of Ultra-tough Slag-Sugarcane Bagasse Ash Based Geopolymer Composite Materials
LI Jing1,2,*, JIAO Zhisen1, ZHANG Ling1, HUANG Ying1,2, CHEN Zheng1,2
1 School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2 State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
下载:  全 文 ( PDF ) ( 7641KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工程地聚物复合材料(EGC)因优异的力学性能和抗侵蚀特性被视作修复和改造各种基础设施的理想材料,然而,和易性不稳定显著限制了其在工程领域的推广应用。因此,本工作从EGC原材料组成出发,研究了甘蔗渣灰、纤维、水胶比以及碱当量等关键组成参数对其流变特性和流动度的影响,以期实现基于原材料配比参数的EGC施工性能评估。同时,对Bingham和Modified Bingham模型在拟合EGC流变曲线方面的适用性进行了分析。结果表明:Modified Bingham模型更适合描述EGC浆体的流变特性;增加甘蔗渣灰掺量可同时提高浆体的塑性粘度、屈服应力和流动度;增加纤维掺量使浆体塑性黏度和屈服应力增大,流动度降低;水胶比的增大降低了浆体的塑性黏度,增大了流动度;碱当量的增加使浆体的塑性黏度增大、屈服应力减小,流动度呈先增后减的趋势;EGC浆体的流变参数与流动度之间的关系式为D=30.30-0.07τ0-3.32μ;同时,还基于原材料配合比参数建立了EGC流动度预测模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李静
焦之森
张灵
黄莹
陈正
关键词:  工程地聚物复合材料(EGC)  流变  流动度  多因素模型    
Abstract: Engineered geopolymer composites (EGC) are regarded as ideal materials for the repair and modification of various infrastructures due to their excellent mechanical and erosion-resistant properties. However, the instability of workability significantly limits their promotion and application in the engineering field. Therefore, in this paper, from the composition of EGC raw materials, the effects of key compositional parameters, such as sugarcane bagasse ash, fibers, water-to-cement ratio, and alkali equivalents, on its rheological properties and fluidity were investigated with a view to achieving the evaluation of the construction performance of EGC based on the raw material proportioning parameters. The applicability of the Bingham and Modified Bingham models in fitting the rheological curves of EGC was also analyzed. The results indicate that the Modified Bingham model is more suitable for describing the rheological properties of EGC slurry. Increasing the sugarcane bagasse ash content enhances the plastic viscosity, yield stress, and flowability of the slurry. An increase in fiber content raises both the plastic viscosity and yield stress while reducing flowability. An increase in the water-to-binder ratio decreases the plastic viscosity and increases flowability. An increase in alkali equivalent increases the plastic viscosity, decreases the yield stress, and results in a trend where flowability first increases and then decreases. The relationship between the rheological parameters and flowability of EGC slurry is expressed as D=30.30-0.07τ0-3.32μ. Additionally, a flowability prediction model for EGC based on raw material composition parameters is established.
Key words:  engineered geopolymer composites(EGC)    rheology    fluidity    multifactor model
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52562002);广西自然科学基金(2025GXNSFDA02850002);广西青年科技人才工程(GXYESS2025018)
通讯作者:  *李静,博士,广西大学土木建筑工程学院副教授、博士研究生导师,目前主要从事新型建筑材料领域的相关研究。jingli@gxu.edu.cn   
引用本文:    
李静, 焦之森, 张灵, 黄莹, 陈正. 超高韧性矿渣-甘蔗渣灰基地聚物复合材料的流变特性研究[J]. 材料导报, 2026, 40(2): 24080183-7.
LI Jing, JIAO Zhisen, ZHANG Ling, HUANG Ying, CHEN Zheng. Rheological Characteristics Study of Ultra-tough Slag-Sugarcane Bagasse Ash Based Geopolymer Composite Materials. Materials Reports, 2026, 40(2): 24080183-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080183  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24080183
1 Kang Y J, Guo Z L, Ye B B, et al. Materials Reports, 2024, 38(3), 108(in Chinese).
康迎杰, 郭自利, 叶斌斌, 等. 材料导报, 2024, 38(3), 108.
2 Banaay K M H, Dela C O G, Muhi M M. International Journal of Geomate, 2023, 24(106), 101.
3 Qian L P, Huang B T, Xu L Y, et al. Construction and Building Materials, 2023, 367.
4 Zhong H, Zhang M Z. Cement & Concrete Composites, 2023, 135, 104850.
5 Lao J C, Huang B T, Xu L Y, et al. Cement & Concrete Composites, 2023, 138, 104998.
6 Al-Mashhadani M M, Canpolat O, Aygörmez Y, et al. Construction and Building Materials, 2018, 167, 505.
7 Lee B Y, Cho C G, Lim H J, et al. Construction and Building Materials, 2012, 37, 15.
8 李静, 张灵, 庄恩德, 等. 中国专利, CN116143457A, 2023.
9 Shumuye E D, mehrpay S, fang G H, et al. Journal of Building Engineering, 2024, 86, 108782.
10 Wang S J, Li B, Li C X, et al. Journal of the Chinese Ceramic Society, 2023, 51(8), 1962 (in Chinese).
王圣杰, 李兵, 李传习, 等. 硅酸盐学报, 2023, 51(8), 1962.
11 Zhang P, Wei S Y, Zheng Y X, et al. Polymers, 2022, 14(18), 3765.
12 Choi S J, Choi J I, Song J K, et al. Construction and Building Materials, 2015, 96, 112.
13 Sun Y Q, Cai J M, Xu L, et al. Journal of Cleaner Production, 2024, 441, 141065.
14 Duan P P, Li S C, Wang P J. Materials Reports, 2023, 37(S2), 255 (in Chinese).
段培培, 李绍纯, 王培军. 材料导报, 2023, 37(S2), 255.
15 Liu Y, Shi C J, Jiao D W, et al. Journal of the Chinese Ceramic Society, 2017, 45(5), 708 (in Chinese).
刘豫, 史才军, 焦登武, 等. 硅酸盐学报, 2017, 45(5), 708.
16 Lu C, Zhang Z, Shi C, et al. Cement and Concrete Composites, 2021, 121.
17 Xiao J, Zhang Z D, Han K D, et al. Journal of Building Materials, 2021, 24(2), 231 (in Chinese).
肖佳, 张泽的, 韩凯东, 等. 建筑材料学报, 2021, 24(2), 231.
18 Lowke D, Gehlen C. Cement and Concrete Research, 2017, 95, 195.
19 Cao M, Xu L, Zhang C. Construction and Building Materials, 2018, 171, 736.
20 Lee S J, Ryu S, Won J P. Composite Structures, 2021, 267, 113862.
21 Liu Y F, Wu Z M, Zhang X H, et al. Journal of the Chinese Ceramic Society, 2023, 51(11), 3025(in Chinese).
刘一帆, 吴泽媚, 张轩翰, 等. 硅酸盐学报, 2023, 51(11), 3025.
22 Santa R, Kessler J C, Soares C, et al. Particuology, 2018, 41, 101.
23 Rifaai Y, Yahia A, Mostafa A, et al. Construction and Building Materials, 2019, 223, 583.
24 Li J, Tao Y, Zhuang E, et al. Journal of Cleaner Production, 2022, 377, 134215.
[1] 周祥胥, 段锋, 朱博. 基于机器学习的SHAP和PDP分析对UHPC流变性能的研究[J]. 材料导报, 2026, 40(2): 24100237-8.
[2] 席晗, 孔令云. 紫外老化沥青分子构成变化及其与流变性能和化学组成的构效关系[J]. 材料导报, 2025, 39(6): 23120008-9.
[3] 易忠来, 纪文骁, 李化建, 杨志强, 温浩, 王振. 混凝土稳健性评价方法及提升措施研究进展[J]. 材料导报, 2025, 39(6): 24020022-12.
[4] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[5] 姜骞, 于诚, 张茜, 周脉席, 刘建忠, 韩方玉. 清水混凝土的表面气孔缺陷形成与调控研究进展[J]. 材料导报, 2025, 39(4): 23110170-8.
[6] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[7] 张万国, 万贵稳, 乔元辉, 张吉哲, 熊远顺. 生物油基再生剂对老化沥青流变性能恢复规律研究[J]. 材料导报, 2025, 39(22): 24110036-8.
[8] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[9] 马亚鹏, 翟文辉, 张东生, 朱涛, 杨秋宁, 毛明杰. 复合外加剂对3D打印砂浆流变与建造性的协同机制及孔结构研究[J]. 材料导报, 2025, 39(17): 25030044-8.
[10] 杨正辉, 朱涛, 张东生, 杨秋宁, 毛明杰. 纳米Al2O3和钢纤维复合增强煤矸石-矿渣基地聚合物灌浆材料的性能研究[J]. 材料导报, 2025, 39(15): 24050076-11.
[11] 张大旺, 许晓光, 李辉. 3D打印混凝土的长期性能研究进展[J]. 材料导报, 2025, 39(13): 24030165-13.
[12] 杨旭, 张海波, 师广岭, 侯成岩, 周伟. 粉磨原位合成PCE对自减水型水泥性能的影响[J]. 材料导报, 2025, 39(10): 24010074-7.
[13] 刘超, 蒙毅升, 武怡文, 刘化威. 3D打印再生砂浆早期流变性能及结构经时演化研究[J]. 材料导报, 2024, 38(9): 22100157-8.
[14] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[15] 李娇娇, 范婧, 王重. 非晶合金中剪切温升的研究进展[J]. 材料导报, 2024, 38(8): 22050070-8.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed