Please wait a minute...
材料导报  2025, Vol. 39 Issue (18): 24070017-7    https://doi.org/10.11896/cldb.24070017
  高分子与聚合物基复合材料 |
一种兼具优异力学性能、可回收性和刺激响应性的全生物质基席夫碱Vitrimer
项阳光, 赵俊杰, 贺燕燕, 李金玲*, 付飞*
河南工业大学前沿交叉科学与技术学院,郑州 450001
All-biomass-based Schiff Base Vitrimer Combining Excellent Mechanical Properties with Recyclability and Stimulus Responsiveness
XIANG Yangguang, ZHAO Junjie, HE Yanyan, LI Jinling*, FU Fei*
College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 14775KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 当前高分子材料的发展面临着石油基塑料带来的环境污染和资源短缺两大问题,使得寻求可持续替代资源成为研究热点。本工作利用环境友好、可再生的生物基香草醛、癸二胺和多聚甲醛为原料合成含噁嗪结构的二醛单体,然后通过条件温和的亚胺缩合反应制备出一种全生物质基热塑性材料(VD-DM),后经噁嗪开环聚合制备出具有优异力学性能的全生物质基席夫碱Vitrimer材料(VD-DM-1)。通过噁嗪的开环聚合,可调控材料的力学性能,使拉伸强度由38.2 MPa提高到55.8 MPa,断裂伸长率由181.6%降低到10.4%,可媲美石油基材料且高于大多数全生物质基材料。基于亚胺键的动态交换,两种材料均具有优异的再加工、形状记忆性能,同时能够在酸催化下水解和在胺溶液中溶解,实现低成本的化学降解,此外VD-DM也能够实现单体的回收。本工作有望为制备高性能全生物质基材料作为石油基材料的可持续替代品提供新的设计策略。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
项阳光
赵俊杰
贺燕燕
李金玲
付飞
关键词:  香草醛  席夫碱  Vitrimer  动态共价键  可再加工  形状记忆    
Abstract: The development of polymer materials is currently facing two major problems — environmental pollution and resource shortage caused by petroleum-based plastics, making the search for sustainable alternative resources a hot research topic. In this study, environmentally friendly and renewable bio-based vanillin, decanediamine, and paraformaldehyde were used as raw materials to synthesize dialdehyde monomers containing an oxazine structure, and then an all-biomass-based thermoplastic material (VD-DM) was prepared by an imine condensation reaction under mild conditions, followed by oxazine ring-opening polymerisation to prepare an all-biomass-based Schiff base Vitrimer material (VD-DM-1) with excellent mechanical properties. The material was prepared by ring-opening polymerisation of oxazine. The mechanical properties of the material could be modulated through the ring-opening polymerisation of oxazine, resulting in an increase in tensile strength from 38.2 MPa to 55.8 MPa but a decrease in elongation at break from 181.6% to 10.4%, which is comparable to petroleum-based materials and higher than most of the all-biomass-based materials. Based on the dynamic exchange of imine bonds, both materials have excellent reprocessing and shape memory pro-perties, as well as the ability to be hydrolysed under acid catalysed hydrolysis and dissolved in amine solution for low-cost chemical degradation, and the VD-DM is also capable of monomer recycling. The output of this work may provide a new design strategy for the preparation of high-performance all-biomass-based materials as a sustainable alternative to petroleum-based plastics.
Key words:  vanillin    Schiff base    Vitrimer    dynamic covalent bonding    reprocessability    shape memory
出版日期:  2025-09-25      发布日期:  2025-09-11
ZTFLH:  O636  
基金资助: 河南工业大学博士基金项目(2023BS090);2022年河南省专业学位研究生精品教学案例项目(YJS2022AL045);2022年校级教育科学规划课题(2022JKZD006)
通讯作者:  *李金玲,博士,副教授,主要从事新型有机功能材料的设计、合成及应用研究。jinling_li@haut.edu.cn;
付飞,博士,讲师,主要从事可自修复材料、天然资源与利用等方向的研究。fufei1059@163.com   
作者简介:  项阳光,河南工业大学前沿交叉科学与技术学院硕士研究生,主要研究多功能刺激响应材料。
引用本文:    
项阳光, 赵俊杰, 贺燕燕, 李金玲, 付飞. 一种兼具优异力学性能、可回收性和刺激响应性的全生物质基席夫碱Vitrimer[J]. 材料导报, 2025, 39(18): 24070017-7.
XIANG Yangguang, ZHAO Junjie, HE Yanyan, LI Jinling, FU Fei. All-biomass-based Schiff Base Vitrimer Combining Excellent Mechanical Properties with Recyclability and Stimulus Responsiveness. Materials Reports, 2025, 39(18): 24070017-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070017  或          https://www.mater-rep.com/CN/Y2025/V39/I18/24070017
1 Wojtecki R J, Meador M A, Rowan S J. Nature Materials, 2011, 10, 14.
2 Jin Y, Lei Z, Taynton P, et al. Matter, DOI:10.1016/j.matt.2019.09.004.
3 Nicolaÿ R, Kamada J, Wassen A R V, et al. Macromolecules, 2010, 43, 4355.
4 Xia Q, Chen C, Yao Y, et al. Nature Sustainability, 2021, 4, 627.
5 Kloxin C J, Scott T F, Adzima B J, et al. Macromolecules, 2010, 43(6), 2643.
6 Montarnal D, Capelot M, Tournilhac F, et al. Science, 2011, 334(6058), 965.
7 Dong S, Yang L, Zhang P, et al. Polymer, DOI:10.1016/j.polymer.2021.124434.
8 Wang X, Wang Y L, Yang X, et al. Macromolecules, 2021, 54(23), 10767.
9 Christensen P R, Scheuermann A M, Loeffler K E, et al. Nature Che-mistry, 2019, 11, 442.
10 Winne J M, Leibler L, Du Prez F E. Polymer Chemistry, DOI:10.1039/c9py01260e.
11 Li X J, Man X H, Xue S A, et al. Materials Reports, 2023, 37(15), 280 (in Chinese).
李兴建, 满孝海, 薛申奥, 等. 材料导报, 2023, 37(15), 280.
12 Xiang H P, Qian H J, Lu Z Y, et al. Green Chemistry, 2015, 17, 4315.
13 Taynton P, Yu K, Shoemaker R K, et al. Advanced Materials, DOI:10.1002/adma.201400317.
14 Roy C D, Brown H C. Monatshefte für Chemie, 2007, 138(9), 879.
15 Chen X, Dam M A, Ono K, et al. Science, 2002, 295(5560), 1698.
16 Jin Y, Zhu Y, Zhang W. CrystEngComm, 2013, 15, 1484.
17 Taynton P, Ni H, Zhu C, et al. Advanced Materials, 2016, 28(15), 2904.
18 Xin Y, Yuan J. Polymer Chemistry, 2012, 3, 3045.
19 Deng G, Tang C, Li F, et al. Macromolecules, 2010, 43, 1191.
20 Ciaccia M G, Cacciapaglia R, Mencarelli P, et al. Chemical Science, 2013, 4, 2253.
21 Belowich M E, Stoddart J F. Chemical Society Reviews, 2012, 41(6), 2003.
22 Wang X C, Qin Y Y, Guo H G. Materials Reports, 2022, 36(S1), 528 (in Chinese).
王秀超, 秦莹莹, 郭红革. 材料导报, 2022, 36(S1), 528.
23 Liu T, Fei M E, Zhao B M, et al. Journal of Polymer Science, 2020, 51(8), 16 (in Chinese).
刘湍, 费铭恩, 赵保明, 等. 高分子学报, 2020, 51(8), 16.
24 Li R, Zhang P, Liu T, et al. ACS Sustainable Chemistry & Engineering, DOI:10.1021/ACSSUSCHEMENG.7B04399.
25 Rashid M A, Zhu S, Jiang Q, et al. ACS Applied Polymer Materials, DOI:10.1021/acsapm.2c01501.
26 Yang Y, Xia Z, Huang L, et al. ACS Applied Materials & Interfaces, 2022, 14(41), 47025.
27 Dhers S, Vantomme G, Avérous L. Green Chemistry, DOI:10.1039/C9GC00540D.
28 Jiang L, Tian Y, Wang X, et al. Polymer Chemistry, DOI:10.1039/d2py00900e.
29 Li P, Zhang J, Ma J, et al. Industrial Crops and Products, DOI:10.1016/j.indcrop.2023.117288.
30 Meyer C D, Joiner C S, Stoddart J F. Chemical Society Reviews, 2007, 36(11), 1705.
[1] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[2] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[3] 杨院霞, 郝刚领, 千佳祥, 王幸福, 许巧平, 王伟国. 硼元素及热轧对CuAlNi合金微观组织和力学性能的影响[J]. 材料导报, 2025, 39(13): 24070166-7.
[4] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[5] 张括, 李明鹏, 周国安, 张龄匀. 加载频率对镍钛形状记忆合金循环压缩过程中相变、塑性与传热相互作用的影响[J]. 材料导报, 2025, 39(10): 24060186-6.
[6] 李兴建, 吕佳宁, 姚新宽, 周孟, 李因文, 徐守芳. 动态热机械分析技术在高分子形状记忆效应表征中的应用进展[J]. 材料导报, 2024, 38(22): 23040274-11.
[7] 周玉浩, 连鸣, 王颜凯, 苏明周. 7×19构型NiTi形状记忆合金绞线超弹性试验研究[J]. 材料导报, 2024, 38(21): 23070029-10.
[8] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[9] 刘晨爽, 田野, 盛显良, 斯琴塔娜, 张玉辉. 天然高分子多糖在药物传递领域中的应用[J]. 材料导报, 2024, 38(19): 23050200-18.
[10] 赵光伟, 李达, 陈健, 方东, 黄才华, 石增敏, 叶永盛. Hf含量对Ti49-XNi44Cu6Y1HfX形状记忆合金的组织与超弹性的影响[J]. 材料导报, 2023, 37(9): 21010179-6.
[11] 简琼艺, 王益雷, 姜喆瑞, 郭倩如, 张浩, 李可洲. 具有表面微图形化胰肠吻合口支架的构建及研究[J]. 材料导报, 2023, 37(19): 22040322-10.
[12] 李兴建, 满孝海, 薛申奥, 王学蕊, 李因文, 徐守芳. 聚烯烃Vitrimer材料的设计、合成和性能[J]. 材料导报, 2023, 37(15): 21100058-9.
[13] 李兴建, 侯晴, 杨继龙, 范宇飞, 崔秋月, 徐守芳. 电刺激响应形状记忆聚合物复合材料的设计和驱动性能[J]. 材料导报, 2022, 36(6): 20070243-12.
[14] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[15] 雷波, 郝刚领, 李育川, 王金. 冷却速率对CuAlNi形状记忆合金阻尼行为的影响[J]. 材料导报, 2022, 36(24): 21090026-4.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed