Advances in the Expansion Mechanism and Modification of Silicon-based Anode for Lithium-ion Batteries
FU Ju1,2, MA Xingyang1,2, XIE Wenna1,2, LYU Pengfei1,2, ZHI Maoyong1,2,*
1 Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province,College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,Sichuan,China 2 Sichuan Key Technology Engineering Research Center for All-electric Navigable Aircraft,College of Civil Aviation Safety Engineering,Civil Aviation Flight University of China,Guanghan 618307,Sichuan,China
Abstract: Lithium-ion batteries are developing rapidly in the energy field due to their advantages of high energy density,low self-discharge rate,no me-mory effect,etc.Silicon-based anodes are considered to be the most promising anode material following graphite due to its high theoretical specific capacity.However,the serious volume expansion of silicon-based anodes during the lithiation/delithiation process results in capacity degradation,coulombic efficiency decline,and other issues,which still hinder its commercialization.This paper reviews the expansion mechanism and modification research progress of silicon-based anodes,aiming to provide theoretical support and practical guidance for solving the expansion problem faced when it is used as anode material for lithium-ion batteries.Through the introduction of the working principle of silicon-based anodes,it discusses the expansion mechanism in depth and analyzes in detail the effects and potential hazards of expansion on the performance of silicon-based anodes.More specifically,it focuses on four aspects,namely,multi-dimensional nano-silicon structure,composite,binder,and electrolyte design,to systematically elucidate the research on silicon-based anode modification,and to make a prospective outlook on the future development.
1 Li X H. People's Tribune, 2024(9), 76 (in Chinese). 李晓华. 人民论坛, 2024(9), 76. 2 Gao X T, Kuang J, Chu P, et al. Southern Energy Construction, 2020, 7(4), 1 (in Chinese). 高啸天, 匡俊, 楚攀, 等. 南方能源建设, 2020, 7(4), 1. 3 Li H, Lyu Y C. Journal of Electrochemistry, 2015, 21(5), 412 (in Chinese) 李泓, 吕迎春. 电化学, 2015, 21(5), 412. 4 Jiang Y M, Li M C, Fan S L, et al. Journal of Zhejiang Institute of Science and Technology, 2025, 53(1), 52 (in Chinese). 江永明, 李梦成, 范淑玲, 等. 浙江理工大学学报, 2025, 53(1), 52. 5 Yang X F. Structural design and preparation of high specific capacity silicon-base and zinc oxide-base anode materials. Master's Thesis, Beijing University of Chemical Technology, China, 2020 (in Chinese). 杨晓飞. 高比容量硅基和氧化锌基负极材料的结构设计与制备研究. 硕士学位论文, 北京化工大学, 2020. 6 Xu X, Zhang H, Chen Y, et al. Journal of Alloys and Compounds, 2016, 677, 237. 7 Hu Z, Xu X, Wang X, et al. Journal of Alloys and Compounds, 2020, 835, 155446. 8 Huggins R A. Journal of Power Sources, 1999, 81, 13. 9 Obrovac M N, Christensen L. Electrochemical and Solid-state Letters, 2004, 7(5), A93. 10 Park C M, Kim J H, Kim H, et al. Chemical Society Reviews, 2010, 39(8), 3115. 11 Prajapati A K, Bhatnagar A. Journal of Energy Chemistry, 2023, 83, 509. 12 Gu M, He Y, Zheng J, et al. Nano Energy, 2015, 17, 366. 13 Zhao X, Lehto V P. Nanotechnology, 2020, 32(4), 042002. 14 Wu H, Cui Y. Nano Today, 2012, 7(5), 414. 15 Yao Y, McDowell M T, Ryu I, et al. Nano Letters, 2011, 11(7), 2949. 16 Ge M, Rong J, Fang X, et al. Nano Research, 2013, 6(3), 174. 17 Yang Y H, Wu S J, Chiu H S, et al. The Journal of Physical Chemistry B, 2004, 108(3), 846. 18 Pan Z W, Dai Z R, Xu L, et al. The Journal of Physical Chemistry B, 2001, 105(13), 2507. 19 Zhou G W, Li H, Sun H P, et al. Applied Physics Letters, 1999, 75(16), 2447. 20 Laik B, Eude L, Pereira-Ramos J P, et al. Electrochimica Acta, 2008, 53(17), 5528. 21 Chan C K, Peng H, Liu G, et al. Nature Nanotechnology, 2008, 3(1), 31. 22 Park M H, Kim M G, Joo J, et al. Nano Letters, 2009, 9(11), 3844. 23 Ortaboy S, Alper J P, Rossi F, et al. Energy & Environmental Science, 2017, 10(6), 1505. 24 Lu J, Liu J, Gong X, et al. Energy Storage Materials, 2022, 46, 594. 25 Chevrier V L, Dahn J R. Journal of the Electrochemical Society, 2009, 156(6), A454. 26 Lu Z, Wong T, Ng T W, et al. Rsc Advances, 2014, 4(5), 2440. 27 Song T, Xia J, Lee J H, et al. Nano Letters, 2010, 10(5), 1710. 28 Tong L, Wang P, Chen A, et al. Carbon, 2019, 153, 592. 29 Jin H, Sun Q, Wang J, et al. New Carbon Materials, 2021, 36(2), 390. 30 Su J T, Lin S H, Cheng C C, et al. Journal of Power Sources, 2022, 531, 231345. 31 Li C, Yuan C, Zhu J, et al. Colloids and Surfaces A, 2022, 655, 129721. 32 Lai P, Liu C, Sun Z, et al. Solid State Sciences, 2024, 148, 107408. 33 Ma C, Wang Z, Zhao Y, et al. Journal of Alloys and Compounds, 2020, 844, 156201. 34 Zhu L H, Chen Y, Wu C, et al. Journal of Alloys and Compounds, 812, 2020, 151848. 35 Su L, Xie J, Xu Y, et al. Physical Chemistry Chemical Physics, 2015, 17(27), 17562. 36 Zhang Y W, Li X T, Zhang Y, et al. Journal of Alloys and Compounds, 2023, 968, 171831. 37 Kim J C, Kim K J, Lee S M. Energies, 2021, 14(8), 2104. 38 Gu L, Han J, Chen M, et al. Energy Storage Materials, 2022, 52, 547. 39 Lee S J, Kim H J, Hwang T H, et al. Nano Letters, 2017, 17(3), 1870. 40 Zhang Y, Mu Z, Lai J, et al. ACS Nano, 2019, 13(2), 2167. 41 Sadeghipari M, Mashayekhi A, Mohajerzadeh S. Nanotechnology, 2018, 29, 055403. 42 Shi J, Zu L, Gao H, et al. Advanced Functional Materials, 2020, 30(35), 2002980. 43 Fang J B, Cao Y Q, Chang S Z, et al. Advanced Functional Materials, 2022, 32(7), 2109682. 44 Li Z, Zhao H, Lv P, et al. Advanced Functional Materials, 2018, 28(31), 1605711. 45 Jin Y, Li S, Kushima A, et al. Energy & Environmental Science, 2017, 10(2), 580. 46 Casino S, Heidrich B, Makvandi A, et al. Journal of Energy Storage, 2021, 44, 103479. 47 Fu L, Xu A, Song Y, et al. Electrochimica Acta, 2021, 387, 138461. 48 Fang R, Li R, Wang Z, et al. Solid State Ionics, 2019, 337, 42. 49 Zhang Y, Zhu C, Ma Z. Journal of Alloys and Compounds, 2021, 851, 156854. 50 Ruttert M, Siozios V, Winter M, et al. ACS Applied Energy Materials, 2019, 3(1), 743. 51 Zhang L, Liu X, Zhang M, et al. Applied Surface Science, 2019, 494, 783. 52 Cao Y, Hatchard T D, Dunlap R A, et al. Journal of Materials Chemistry A, 2019, 7(14), 8335. 53 Chen Y, Huang M, Deng G, et al. Chemical Engineering Journal, 2024, 486, 150111. 54 Xu R, Shi Y, Wang W, et al. International Journal of Green Energy, 2022, 19, 1658. 55 Jang E, Ryu S, Kim M, et al. Journal of Power Sources, 2023, 580, 233326. 56 Wang X, Zhang Y, Ma L, et al. Acta Chimica Sinica, 2019, 77(1), 24. 57 Luan Y G, Zhang X A, Jiang S L, et al. Chinese Journal of Polymer Science, 2018, 36(5), 584. 58 Zhou J H, Cheng X Y, Luo Z W. Fine Chemicals, 2022, 39(7), 1330 (in Chinese). 周建华, 陈潇雨, 罗宗武. 精细化工, 2022, 39(7), 1330. 59 Wang Y, Xu H, Chen X, et al. Energy Storage Materials, 2021, 38, 121. 60 Bai H, Zhou Z, Yang B, et al. Journal of the Electrochemical Society, 2024, 171(5), 050513. 61 Yin J, Xing H, Lin G, et al. Chemical Engineering Journal, 2019, 358, 878. 62 Jiao X, Yin J, Xu X, et al. Advanced Functional Materials, 2021, 31(3), 2005699. 63 Tang R, Zheng X, Zhang Y, et al. Ionics, 2020, 26(12), 5889. 64 Luo C, Wu X, Zhang T, et al. Macromolecular Materials and Engineering, 2021, 306(1), 2000525. 65 Zhang C, Chen Q, Ai X, et al. Journal of Materials Chemistry A, 2020, 8(32), 16323. 66 Kim D S, Kim S H, Hong J Y. Carbon Letters, 2024, 34(8), 2081. 67 Liu D, Zhao Y, Tan R, et al. Nano Energy, 2017, 36, 206. 68 Cai Y, Li Y, Jin B Y, et al. ACS Applied Materials & Interfaces, 2019, 11(50), 46800. 69 Luo C, Du L, Wu W, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(10), 12621. 70 Gu Y, Yang S, Zhu G, et al. Electrochimica Acta, 2018, 269, 405. 71 Sarang K T, Li X, Miranda A, et al. ACS Applied Energy Materials, 2020, 3(7), 6985. 72 Zhu G, Chao D, Xu W, et al. ACS Nano, 2021, 15(10), 15567. 73 Jin Y, Kneusels N J H, Marbella L E, et al. Journal of the American Chemical Society, 2018, 140(31), 9854. 74 Li Q, Liu X, Han X, et al. ACS Applied Materials & Interfaces, 2019, 11(15), 14066. 75 Cao Z, Zheng X, Qu Q, et al. Advanced Materials, 2021, 33(38), 2103178. 76 Domi Y, Usui H, Yamaguchi K, et al. ACS Applied Materials & Interfaces, 2019, 11(3), 2950.