Please wait a minute...
材料导报  2024, Vol. 38 Issue (22): 23040274-11    https://doi.org/10.11896/cldb.23040274
  高分子与聚合物基复合材料 |
动态热机械分析技术在高分子形状记忆效应表征中的应用进展
李兴建1,*, 吕佳宁1, 姚新宽2, 周孟2, 李因文1, 徐守芳1
1 临沂大学材料科学与工程学院,山东 临沂 276000
2 淄博市特种设备检验研究院,山东 淄博 255000
Progress in Application of Dynamic Thermomechanical Analysis Technique in Characterization of Polymeric Shape Memory Effects
LI Xingjian1,*, LYU Jianing1, YAO Xinkuan2, ZHOU Meng2, LI Yinwen1, XU Shoufang1
1 School of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China
2 Zibo Institute of Special Equipment Inspection, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 5285KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 形状记忆高分子(SMP)是指能够感知外界环境变化的刺激并响应这种变化,对其自身状态参数进行调整,从而回复到预先设定状态的一类高分子材料。目前SMP除能够实现研究最为广泛的不可逆双重形状记忆效应外,也能够展现复杂的三重形状记忆效应、多重形状记忆效应、恒定外力下的可逆双向形状记忆效应、无外力的可逆双向形状记忆效应及其形状可重构效应。通常聚合物的形状记忆效应能够使用动态热机械分析技术进行表征,通过控制SMP的应力、应变和温度能够实现变形、暂时形状的固定和形状的回复,从而得到应力-应变-温度循环热机械曲线,实现定量形状记忆性能,包括形状固定率(Rf)、形状回复率(Rr)、形状回复速率(Vr)和形状回复力等。本文综述了动态热机械分析仪(TA-Q800)的拉伸模式在各种形状记忆效应表征中的应用,包括测试程序的选择、程序设置及其相对应的热机械循环曲线、参数计算和测试条件对形状记忆效应的影响,最后分析了研究中存在的问题并展望了未来发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兴建
吕佳宁
姚新宽
周孟
李因文
徐守芳
关键词:  形状记忆高分子  动态热机械分析  形状记忆效应  表征    
Abstract: The shape memory polymers refer to a class of intelligent materials that sense changes in the external environment, respond to such changes, adjust to its own state parameters and return to a preset state. At present, SMP can not only realize the most widely studied irreversible double shape memory effect, but also exhibit complex triple shape memory effect, multiple shape memory effect, reversible two-way shape me-mory effect under constant external force, and reversible two-way shape memory effect without external force and shape reconfigurable effects. Generally, the shape memory effect of polymers can be characterized using dynamic thermomechanical analysis techniques. By controlling the stress, strain and temperature of the SMP, deformation, temporary shape fixation and shape recovery can be achieved, thereby obtaining a stress-strain-temperature cycle thermomechanical curves to achieve quantitative shape memory performance, including shape fixation ratio (Rf), shape recovery ratio (Rr), shape recovery speed and shape recovery force, etc. This paper reviews the application of the tensile mode of the dynamic thermomechanical analyzer (TA-Q800) in the characterization of various shape memory effects, including the selection of test programs, program settings and their corresponding thermomechanical cycle curves, parameter calculations, and influences of test conditions on shape memory effects. It ends with a critical and prospective discussion on problems existing in the current research and future development trends of this field.
Key words:  shape memory polymer    dynamic thermomechanical analysis    shape memory effect    characterization
出版日期:  2024-11-25      发布日期:  2024-11-22
ZTFLH:  O631.2  
基金资助: 国家自然科学基金面上项目(22275076;22172070);山东省自然科学青年基金项目(ZR2020QE092);山东省自然科学基金重点项目(ZR2020KE002);2023国家级大学生创新创业训练计划项目(202310452143)
通讯作者:  *李兴建,临沂大学材料科学与工程学院副教授、硕士研究生导师。2016年博士毕业于中国科学院成都有机化学研究所,同年进入浙江大学从事博士后研究工作。于2018年任教于临沂大学材料科学与工程学院,主要从事形状记忆高分子材料的研究。在Advanced Functional Materials、Polymer Chemistry、Macromolecular Rapid Communications等期刊发表论文50余篇。lixingjian1314@163.com   
引用本文:    
李兴建, 吕佳宁, 姚新宽, 周孟, 李因文, 徐守芳. 动态热机械分析技术在高分子形状记忆效应表征中的应用进展[J]. 材料导报, 2024, 38(22): 23040274-11.
LI Xingjian, LYU Jianing, YAO Xinkuan, ZHOU Meng, LI Yinwen, XU Shoufang. Progress in Application of Dynamic Thermomechanical Analysis Technique in Characterization of Polymeric Shape Memory Effects. Materials Reports, 2024, 38(22): 23040274-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040274  或          http://www.mater-rep.com/CN/Y2024/V38/I22/23040274
1 Zhang J, Yin Z, Ren L, et al. Advanced Materials Technologies, 2022, 7(9), 2101568.
2 Bhanushali H, Amrutkar S, Mestry S, et al. Polymer Bulletin, 2022, 79, 3437.
3 Lendlein A, Kelch S. Angewandte Chemie International Edition, 2002, 41(12), 2034.
4 Zhao Q, Qi H J, Xie T. Progress in Polymer Science, 2015, 49-50, 79.
5 Xie T. Polymer, 2011, 52(22), 4985.
6 Chen G, Jin B, Zhao Q, et al. Journal of Materials Chemistry A, 2021, 9(11), 6827.
7 Liang R, Yu H, Wang L, et al. Advanced Functional Materials, 2021, 31(32), 2102621.
8 Basak S, Bandyopadhyay A. Macromolecular Chemistry and Physics, 2021, 222(19), 2100195.
9 Xia Y, He Y, Zhang F, et al. Advanced Materials, 2020, 33(6), 2000713.
10 Dayyoub T, Maksimkin A V, Filippova O V, et al. Polymers, 2022, 14(17), 3511.
11 Oladapo B I, Kayode J F, Akinyoola J O, et al. Materials Chemistry and Physics, 2023, 293, 126930.
12 Spiegel C A, Hackner M, Bothe V P, et al. Advanced Functional Materials, 2022, 32(51), 2110580.
13 Ni C, Xie T. Acta Polymerica Sinica, 2022, 53(10), 1161(in Chinese).
倪楚君, 谢涛. 高分子学报, 2022, 53(10), 1161.
14 Xie T. Nature, 2010, 464(7286), 267.
15 Zhao Q, Zou W, Luo Y, et al. Science Advances, 2016, 2(1), e1501297.
16 Zheng N, Xie T. Acta Polymerica Sinica, 2017(11), 1715(in Chinese).
郑宁, 谢涛. 高分子学报, 2017(11), 1715.
17 Li X, Cheng J, Xue S, et al. Polymer Materials Science & Engineering, 2021, 37(11), 62(in Chinese).
李兴建, 成俊杰, 薛申奥, 等. 高分子材料科学与工程, 2021, 37(11), 62.
18 Li X, Hou Q, Zhang J, et al. Polymer Engineering and Science, 2021, 61(6), 1624.
19 Li X, Feng R, Xu Y, et al. Polymer Chemistry, 2020, 11(4), 909.
20 Li X, Pan Y, Zheng Z, et al. Macromolecular Rapid Communications, 2018, 39(6), 1700613.
21 Li X, Pan Y, Lai J, et al. Polymer Chemistry, 2017, 8(26), 3867.
22 Li X, Pan Y, Deng J, et al. Reactive & Functional Polymers, 2017, 121, 1.
23 Li X, Wang Y, Wu R, et al. Reactive & Functional Polymers, 2017, 119, 26.
24 Zheng N, Xu Y, Zhao Q, et al. Chemical Reviews, 2021, 121(3), 1716.
25 Sauter T, Heuchel M, Kratz K, et al. Polymer Reviews, 2013, 53(1), 6.
26 Wagermaier W, Kratz K, Heuchel M, et al. Advances in Polymer Science, 2010, 226, 97.
27 Altebaeumer T, Gotsmann B, Pozidis H, et al. Nano Letters, 2008, 8(12), 4398.
28 Reddy S, Arzt E, del Campo A. Advanced Materials, 2007, 19(22), 3833.
29 He C, Cheng F, Zhou M, et al. Experiment Science and Technology, 2020, 18(4), 27(in Chinese).
何超, 程飞, 周密, 等. 实验科学与技术, 2020, 18(4), 27.
30 Chen Y, Wang X, Li Y, et al. Journal of Inorganic Materials, 2020, 35(8), 857(in Chinese).
陈云, 王旭升, 李艳霞, 等. 无机材料学报, 2020, 35(8), 857.
31 Claudio R, José L R, Xavier F F, et al. Polymers for Advanced Technologies, 2022, 33, 1715.
32 Li C, Zhang F, Zhao W, et al. Advanced Healthcare Materials, 2023, 12(16), 2300400.
33 Lv J, Wang A, Li Y, et al. ACS Applied Polymer Materials, 2023, 5(10), 8359.
34 He W, Zhou D, Gu H. Macromolecular Rapid Communications, 2023, 44(2), 2200553.
35 Ni C, Chen D, Yin Y, et al. Nature, 2023, 622, 748.
36 Chen G, Jin B, Shi Y, et al. Advanced Materials, 2022, 34(21), 2201679.
37 Feng R, Xu Y, Han H, et al. Materials Reports, 2021, 35(5), 5147(in Chinese).
冯茹, 许雅惠, 韩慧, 等. 材料导报, 2021, 35(5), 5147.
38 Li X, Hou Q, Yang J, et al. Materials Reports, 2022, 36(6), 196(in Chinese).
李兴建, 侯晴, 杨继龙, 等. 材料导报, 2022, 36(6), 196.
39 Li X, Gai Y, Sun M, et al. Advanced Functional Materials, 2022, 32(40), 2205842.
40 Azra C, Plummer C J G, Månson J A E. Smart Materials and Structures, 2011, 20(8), 82002.
41 McClung A J, Tandon G P, Baur J W. Mechanics of Time-Dependent Materials, 2013, 17(1), 39.
42 Ji F L, Hu J L, Li T C, et al. Polymer, 2007, 48(17), 5133.
43 Hu J L, Ji F L, Wong Y W. Polymer International, 2005, 54(3), 600.
44 Ingrid A R. Polymer Engineering and Science, 2008, 48(11), 2075.
45 Ortega A M, Yakacki C M, Dixon S A, et al. Soft Matter, 2012, 8(28), 7381.
46 Xie T, Xiao X, Cheng Y T. Macromolecular Rapid Communications, 2009, 30(21), 1823.
47 Luo X, Mather P T. Advanced Functional Materials, 2010, 20(16), 2649.
48 Chatani S, Wang C, Podgórski M, et al. Macromolecules, 2014, 47(15), 4949.
49 Bellin I, Kelch S, Langer R, et al. Proceedings of the National Academy of Sciences, 2006, 103(48), 18043.
50 Li X, Bai B, Liu S, et al. Materials Reports, 2020, 34(2), 2142(in Chinese).
李兴建, 白宝仕, 刘升, 等. 材料导报, 2020, 34(2), 2142.
51 Li J, Liu T, Xia S, et al. Journal of Materials Chemistry, 2011, 21(33), 12213.
52 Shao Y, Lavigueur C, Zhu X X. Macromolecules, 2012, 45(4), 1924.
53 Chen S, Mo F, Yang Y, et al. Journal of Materials Chemistry A, 2015, 3(6), 2924.
54 Luo Y, Guo Y, Gao X, et al. Advanced Materials, 2013, 25(5), 743.
55 Zhang Q, Song S, Feng J, et al. Journal of Materials Chemistry, 2012, 22(47), 24776.
56 Hoeher R, Raidt T, Krumm C, et al. Macromolecular Chemistry and Physics, 2013, 214(23), 2725.
57 Jin B, Song H, Jiang R, et al. Science Advances, 2018, 4(1), eaao3865.
58 Chung T, Romo-Uribe A, Mather P T. Macromolecules, 2008, 41(1), 184.
59 Zotzmann J, Behl M, Hofmann D, et al. Advanced Materials, 2010, 22(31), 3424.
60 Behl M, Kratz K, Zotzmann J, et al. Advanced Materials, 2013, 25(32), 4466.
61 Meng Y, Jiang J, Anthamatten M. ACS Macro Letters, 2015, 4(1), 115.
62 Stroganov V, Al-Hussein M, Sommer J U, et al. Nano Letters, 2015, 15(3), 1786.
63 Behl M, Kratz K, Noechel U, et al. Proceedings of the National Academy of Sciences, 2013, 110(31), 12555.
64 Westbrook K K, Mather P T, Parakh V, et al. Smart Materials and Structures, 2011, 20(6), 065010.
65 Li X, Wang L, Li Y, et al. ACS Applied Polymer Materials, 2023, 5(2), 1585.
66 Zheng N, Fang Z, Zou W, et al. Angewandte Chemie International Edition, 2016, 128(38), 11593.
67 Fang Z, Shi Y, Mu H, et al. Nature Communications, 2023, 14, 1313.
68 Hubbard A M, Ren Y, Papaioannou P, et al. ACS Applied Polymer Materials, 2022, 4(9), 6374.
[1] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[2] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[3] 秦煜, 王亭, 辛景舟, 汤喻杰, 王威娜. 形状记忆合金增强水泥基复合材料及其构件研究进展[J]. 材料导报, 2024, 38(19): 23060190-9.
[4] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[5] 穆锐, 刘元雪, 欧忠文, 胡志德, 姚未来, 成鑫磊, 雷屹欣, 杨秀明. 气凝胶复合材料的制备及保温隔热应用进展[J]. 材料导报, 2024, 38(14): 22110298-14.
[6] 龚芳媛, 拜佳威, 陈祎, 程雪佼, 王书岳, 邓锐. 沥青混合料中集料迁移的表征方法与评价指标综述[J]. 材料导报, 2024, 38(11): 22100126-14.
[7] 王祺, 冯鑫浩, 刘新有. 古旧木材加固保护研究进展[J]. 材料导报, 2024, 38(1): 22070091-19.
[8] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[9] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[10] 游子娟, 陈汉林. 高熵氧化物合成及催化应用的研究进展[J]. 材料导报, 2023, 37(24): 22090127-11.
[11] 李美琪, 李晓飞, 王瑞涛, 聂林峰, 张润, 张冬海, 陈运法. 碳纤维增强聚合物基复合材料界面特性研究进展[J]. 材料导报, 2023, 37(20): 22030247-12.
[12] 肖建庄, 叶涛华, 隋同波, 潘智生. 废弃混凝土再生微粉的基本问题及应用[J]. 材料导报, 2023, 37(10): 22120116-10.
[13] 孟旭, 水中和, 费洗非. 矿物掺合料对水泥制品表观性能的影响[J]. 材料导报, 2022, 36(Z1): 22040176-5.
[14] 杨博恒, 钱辉, 师亦飞, 康莉萍. 不同训练条件下NiTi形状记忆合金超细丝力学性能的稳定性[J]. 材料导报, 2022, 36(4): 21010093-5.
[15] 肖昌伟, 李文晓. 树脂传递模塑成型工艺复合材料孔隙表征和孔隙形成预测研究进展[J]. 材料导报, 2022, 36(23): 21100167-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed