Effects of Amino Acid Composition and Molecular Surface Properties on the Binding Ability of Collagen to Discoidin Domain Receptor 2
HAN Qingqiu1, KOU Huizhi1,*, WEI Benmei1, XU Chengzhi1, HOU Yuanjing1, WANG Haibo2,*
1 School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China 2 College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China
Abstract: The binding ability of collagen samples from different species to discoidin domain receptor 2 and human tongue squamous cell CAL-27 was stu-died by ELISA and cell adhesion experiments, and the effect of amino acid composition on the binding ability of collagen to cell receptor DDR2 was further investigated. The results showed that there were significant differences in the binding ability of collagen samples from different sources to DDR2 and CAL-27 cells. Among them, the binding ability of mammalian collagen was significantly greater than that of fish collagen, and there were also differences among fish collagen. The correlation analysis between amino acid composition and collagen-receptor DDR2 bin-ding ability showed that collagen-DDR2 binding ability was negatively correlated with aspartate, threonine, glutamic acid, glycine, valine, acidic amino acid, charged polar amino acid and non-polar amino acid. It was positively correlated with hydroxyproline, amino acid, hydroxylation rate (%), uncharged polar amino acid and total polar amino acid (P<0.05). At the same time, the influence of collagen molecular surface properties, including Zeta potential and hydrophilicity, on its binding ability to DDR2 receptor was further studied. Analysis showed that lower Zeta potential absolute values or higher hydrophily contribute to the binding of collagen to DDR2.
1 Vogel W F, Abdulhussein R, Ford C E. Cellular Signalling, 2006, 18(8), 1108. 2 Leitinger B. Joulrnal of Biological Chemistry, 2003, 278(19), 16761. 3 Valiathan R R, Marco M, Leitinger B, et al. Cancer and Metastasis Reviews, 2012, 31(1), 295. 4 Chen E A, Lin Y S. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2019, 1866(11), 118458. 5 Henriet E, Sala M, Abou Hammoud A, et al. Cell Adhesion & Migration, 2018, 1, 324. 6 Fridman R, Agarwal G. Molecular Cell Research, 2019, 1866(11), 118527. 7 Zhang K, Corsa C A, Ponik S M, et al. Nature Cell Biology, 2013, 15(6), 677. 8 Ruiz P A, Jarai G. Fibrogenesis & Tissue Repair, 2012, 5(1), 3. 9 Chattopadhyay S, Raines R T. Biopolymers, 2014, 101(8), 821. 10 Sionkowska A, Skrzyński S, Śmiechowski K, et al. Polymers for Advanced Technologies, 2017, 28(1), 4. 11 Amirrah I N, Lokanathan Y, Zulkiflee I, et al. Biomedicines, 2022, 10(9), 2307. 12 Ghodbane S A, Dunn M G. Journal of Biomedical Materials Research Part A, 2016, 104(11), 2685. 13 Busra F M, Lokanathan Y, Nadzir M M, et al. The Malaysian Journal of Medical Sciences: MJMS, 2017, 24(2), 33. 14 Feng R, Dan N, Chen Y, et al. Materials Reports, 2023, 37(14), 248(in Chinese). 冯荣欣, 但年华, 陈一宁, 等. 材料导报, 2023, 37(14), 248. 15 Yan X, Dan N, Chen Y, et al. Materials Reports, 2023, 37(5), 240(in Chinese). 闫星雨, 但年华, 陈一宁, 等. 材料导报, 2023, 37(5), 240. 16 Wasinski B, Sohail A, Bonfil R D, et al. Scientific Reports, 2020, 10(1), 2309. 17 Konitsiotis A D, Raynal N, Bihan D, et al. Journal of Biological Chemistry, 2008, 283(11), 6861. 18 Leitinger B. Journal of Biological Chemistry, 2003, 278(19), 16761. 19 Lim Y S, Ok Y J, Hwang S Y, et al. Marine Drugs, 2019, 17(8), 467. 20 Al-Nimry S, Dayah A A, Hasan I, et al. Marine Drugs, 2021, 19(3), 145. 21 Subhan F, Hussain Z, Tauseef I, et al. Critical Reviews in Food Science and Nutrition, 2021, 61(6), 1027. 22 Wang K, Camman M, Mosser G, et al. Molecules, 2022, 27(7), 2099. 23 Safandowska M, Pietrucha K. International Journal of Biological Macromolecules, 2013, 53, 32. 24 Hayuningtyas R A, Han M, Choi S, et al. Molecular Medicine, 2021, 27(1), 125. 25 Leitinger B. Journal of Biological Chemistry, 2003, 278(19), 16761. 26 An B, Abbonante V, Xu H, et al. Journal of Biological Chemistry, 2016, 291(9), 4343. 27 Nair M, JohaL R K, Hamaia S W, et al. Biomaterials, 2020, 254, 120109. 28 Xu J, Lu W, Zhang S, et al. Cancer Biology & Therapy, 2014, 15(5), 612 29 Gauza-Włodarczyk M, Kubisz L, Włodarczyk D. International Journal of Biological Macromolecules, 2017, 104, 987. 30 Matmaroh K, Benjakul S, Prodpran T, et al. Food Chemistry, 2011, 129(3), 1179. 31 Kou H, Zhang H, Han Q, et al. Food Science, 2023, 44(6), 143(in Chinese). 寇慧芝, 张惠惠, 韩庆秋, 等. 食品科学, 2023, 44(6), 143. 32 Malcor J D, Juskaite V, Gavriilidou D, et al. Biomaterials, 2018, 182, 21. 33 Deng M, Wang H, Yang L, et al. Modern Food Science and Technology, 2015, 31(12), 111(in Chinese). 邓明霞, 汪海波, 杨玲, 等. 现代食品科技, 2015, 31(12), 111. 34 Chen C C, Hsu W, Hwang K C, et al. Archives of Biochemistry and Biophysics, 2011, 508(1), 46. 35 Chiu H S, Horng J C. The Journal of Physical Chemistry B, 2021, 125(27), 7351.