Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080025-7    https://doi.org/10.11896/cldb.23080025
  高分子与聚合物基复合材料 |
氨基酸组成及分子表面属性对胶原与盘状结构域受体DDR2结合能力的影响
韩庆秋1, 寇慧芝1,*, 未本美1, 许承志1, 侯袁静1, 汪海波2,*
1 武汉轻工大学化学与环境工程学院,武汉 430023
2 湖北工程学院生命科学与技术学院,湖北 孝感 432000
Effects of Amino Acid Composition and Molecular Surface Properties on the Binding Ability of Collagen to Discoidin Domain Receptor 2
HAN Qingqiu1, KOU Huizhi1,*, WEI Benmei1, XU Chengzhi1, HOU Yuanjing1, WANG Haibo2,*
1 School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
2 College of Life Science and Technology, Hubei Engineering University, Xiaogan 432000, Hubei, China
下载:  全 文 ( PDF ) ( 3745KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作利用ELISA实验和细胞黏附实验研究了不同物种来源的胶原样本与盘状结构域受体DDR2及人舌鳞癌细胞CAL-27的结合能力,并进一步探讨了氨基酸组成对胶原与细胞受体DDR2结合能力的影响。结果表明,不同来源的胶原样本与DDR2及CAL-27细胞的结合能力存在显著性差异,其中,哺乳动物胶原的结合能力明显大于鱼类胶原,各鱼类胶原之间也存在差异性。通过分析胶原蛋白的氨基酸组成与胶原-受体DDR2结合能力之间的相关性可知,胶原-DDR2结合能力与天冬氨酸、苏氨酸、谷氨酸、甘氨酸、缬氨酸、酸性氨基酸、带电荷极性氨基酸、非极性氨基酸呈负相关,与羟脯氨酸、亚氨基酸、羟基化率(%)、不带电荷极性氨基酸、总极性氨基酸呈正相关(P<0.05)。与此同时,进一步研究了胶原蛋白分子的表面属性对胶原-受体DDR2结合能力的影响。分析表明,较低的Zeta电位绝对值或较高的亲水性均有助于胶原与DDR2的结合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩庆秋
寇慧芝
未本美
许承志
侯袁静
汪海波
关键词:  胶原蛋白  盘状结构域受体DDR2  氨基酸  结合能力    
Abstract: The binding ability of collagen samples from different species to discoidin domain receptor 2 and human tongue squamous cell CAL-27 was stu-died by ELISA and cell adhesion experiments, and the effect of amino acid composition on the binding ability of collagen to cell receptor DDR2 was further investigated. The results showed that there were significant differences in the binding ability of collagen samples from different sources to DDR2 and CAL-27 cells. Among them, the binding ability of mammalian collagen was significantly greater than that of fish collagen, and there were also differences among fish collagen. The correlation analysis between amino acid composition and collagen-receptor DDR2 bin-ding ability showed that collagen-DDR2 binding ability was negatively correlated with aspartate, threonine, glutamic acid, glycine, valine, acidic amino acid, charged polar amino acid and non-polar amino acid. It was positively correlated with hydroxyproline, amino acid, hydroxylation rate (%), uncharged polar amino acid and total polar amino acid (P<0.05). At the same time, the influence of collagen molecular surface properties, including Zeta potential and hydrophilicity, on its binding ability to DDR2 receptor was further studied. Analysis showed that lower Zeta potential absolute values or higher hydrophily contribute to the binding of collagen to DDR2.
Key words:  collagen    discoidin domain receptor 2    amino acid    binding ability
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  O636.9  
基金资助: 国家自然科学基金(22178277)
通讯作者:  * 寇慧芝,武汉轻工大学高级实验师,目前主要从事农副资源与天然产物的高值化利用及生物医学材料领域的基础研究。发表论文10余篇,其中被EI及SCI收录9篇。hzkou2007@163.com
汪海波,二级教授,博士研究生导师,湖北工程学院党委副书记、校长,湖北省自然科学创新群体和湖北省高校优秀中青年创新团队负责人。2004年于华中农业大学农产品加工储藏专业博士毕业。目前主要从事农副资源与天然产物的高值化利用及生物医学材料领域的基础和应用技术研究,发表论文100余篇,其中被 EI 及 SCI 收录 40余篇,其中一区及Top期刊论文15篇,主持国家自然科学基金面上项目4项,省部级科研项目6项,授权国家发明专利12项。wanghaibo216@126.com   
作者简介:  韩庆秋,2021年6月于河北农业大学获得工学学士学位。现为武汉轻工大学化学与环境工程学院硕士研究生,在汪海波教授、寇慧芝高级实验师的指导下进行研究。目前主要研究领域为天然产物的高值化利用及生物医学材料的基础应用。
引用本文:    
韩庆秋, 寇慧芝, 未本美, 许承志, 侯袁静, 汪海波. 氨基酸组成及分子表面属性对胶原与盘状结构域受体DDR2结合能力的影响[J]. 材料导报, 2024, 38(20): 23080025-7.
HAN Qingqiu, KOU Huizhi, WEI Benmei, XU Chengzhi, HOU Yuanjing, WANG Haibo. Effects of Amino Acid Composition and Molecular Surface Properties on the Binding Ability of Collagen to Discoidin Domain Receptor 2. Materials Reports, 2024, 38(20): 23080025-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080025  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080025
1 Vogel W F, Abdulhussein R, Ford C E. Cellular Signalling, 2006, 18(8), 1108.
2 Leitinger B. Joulrnal of Biological Chemistry, 2003, 278(19), 16761.
3 Valiathan R R, Marco M, Leitinger B, et al. Cancer and Metastasis Reviews, 2012, 31(1), 295.
4 Chen E A, Lin Y S. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2019, 1866(11), 118458.
5 Henriet E, Sala M, Abou Hammoud A, et al. Cell Adhesion & Migration, 2018, 1, 324.
6 Fridman R, Agarwal G. Molecular Cell Research, 2019, 1866(11), 118527.
7 Zhang K, Corsa C A, Ponik S M, et al. Nature Cell Biology, 2013, 15(6), 677.
8 Ruiz P A, Jarai G. Fibrogenesis & Tissue Repair, 2012, 5(1), 3.
9 Chattopadhyay S, Raines R T. Biopolymers, 2014, 101(8), 821.
10 Sionkowska A, Skrzyński S, Śmiechowski K, et al. Polymers for Advanced Technologies, 2017, 28(1), 4.
11 Amirrah I N, Lokanathan Y, Zulkiflee I, et al. Biomedicines, 2022, 10(9), 2307.
12 Ghodbane S A, Dunn M G. Journal of Biomedical Materials Research Part A, 2016, 104(11), 2685.
13 Busra F M, Lokanathan Y, Nadzir M M, et al. The Malaysian Journal of Medical Sciences: MJMS, 2017, 24(2), 33.
14 Feng R, Dan N, Chen Y, et al. Materials Reports, 2023, 37(14), 248(in Chinese).
冯荣欣, 但年华, 陈一宁, 等. 材料导报, 2023, 37(14), 248.
15 Yan X, Dan N, Chen Y, et al. Materials Reports, 2023, 37(5), 240(in Chinese).
闫星雨, 但年华, 陈一宁, 等. 材料导报, 2023, 37(5), 240.
16 Wasinski B, Sohail A, Bonfil R D, et al. Scientific Reports, 2020, 10(1), 2309.
17 Konitsiotis A D, Raynal N, Bihan D, et al. Journal of Biological Chemistry, 2008, 283(11), 6861.
18 Leitinger B. Journal of Biological Chemistry, 2003, 278(19), 16761.
19 Lim Y S, Ok Y J, Hwang S Y, et al. Marine Drugs, 2019, 17(8), 467.
20 Al-Nimry S, Dayah A A, Hasan I, et al. Marine Drugs, 2021, 19(3), 145.
21 Subhan F, Hussain Z, Tauseef I, et al. Critical Reviews in Food Science and Nutrition, 2021, 61(6), 1027.
22 Wang K, Camman M, Mosser G, et al. Molecules, 2022, 27(7), 2099.
23 Safandowska M, Pietrucha K. International Journal of Biological Macromolecules, 2013, 53, 32.
24 Hayuningtyas R A, Han M, Choi S, et al. Molecular Medicine, 2021, 27(1), 125.
25 Leitinger B. Journal of Biological Chemistry, 2003, 278(19), 16761.
26 An B, Abbonante V, Xu H, et al. Journal of Biological Chemistry, 2016, 291(9), 4343.
27 Nair M, JohaL R K, Hamaia S W, et al. Biomaterials, 2020, 254, 120109.
28 Xu J, Lu W, Zhang S, et al. Cancer Biology & Therapy, 2014, 15(5), 612
29 Gauza-Włodarczyk M, Kubisz L, Włodarczyk D. International Journal of Biological Macromolecules, 2017, 104, 987.
30 Matmaroh K, Benjakul S, Prodpran T, et al. Food Chemistry, 2011, 129(3), 1179.
31 Kou H, Zhang H, Han Q, et al. Food Science, 2023, 44(6), 143(in Chinese).
寇慧芝, 张惠惠, 韩庆秋, 等. 食品科学, 2023, 44(6), 143.
32 Malcor J D, Juskaite V, Gavriilidou D, et al. Biomaterials, 2018, 182, 21.
33 Deng M, Wang H, Yang L, et al. Modern Food Science and Technology, 2015, 31(12), 111(in Chinese).
邓明霞, 汪海波, 杨玲, 等. 现代食品科技, 2015, 31(12), 111.
34 Chen C C, Hsu W, Hwang K C, et al. Archives of Biochemistry and Biophysics, 2011, 508(1), 46.
35 Chiu H S, Horng J C. The Journal of Physical Chemistry B, 2021, 125(27), 7351.
[1] 胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
[2] 王环江, 杨启亮, 张雨晨, 吴珠玉, 吕昱, 周国永, 任嗣利. 芳香性聚氨基酸破乳剂的制备及性能评价[J]. 材料导报, 2024, 38(12): 22040309-9.
[3] 马彭逸, 李琛, Ouaskioud Oumaima, 任丽. 胶原蛋白促进成骨细胞在磷灰石基质上增殖和分化[J]. 材料导报, 2024, 38(11): 23050130-11.
[4] 江文革, 李晏安, 邢一, 李海宾, 宋建伟, 刘悦. 手性氨基酸对手性碳酸钙生物矿物的诱导与调控[J]. 材料导报, 2023, 37(17): 22040283-5.
[5] 冯荣欣, 但年华, 陈一宁, 但卫华. 胶原基生物材料在医学美容领域的研究进展[J]. 材料导报, 2023, 37(14): 21110149-9.
[6] 胥聪敏, 高豪然, 朱文胜, 杨兴, 陈月清, 王文渊. D-氨基酸驱散生物膜的行为与作用机理研究[J]. 材料导报, 2023, 37(1): 21050076-7.
[7] 杨方平, 宋子元, 殷黎晨, 唐浩宇, 程建军. 聚氨基酸材料的研究进展[J]. 材料导报, 2022, 36(3): 21080287-18.
[8] 李子晗, 赵超, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 蛋白质压电材料的研究进展[J]. 材料导报, 2022, 36(11): 20080182-8.
[9] 张军, 王薇, 储刚, 周丹丹, 赵婧, 王琳, 李芳芳. 生物炭中溶解性有机质与Cu(Ⅱ)的络合机制研究[J]. 材料导报, 2021, 35(22): 22160-22165.
[10] 储洪强, 王婷婷, 张宇衡, 丁天云, 梁云超, 朱正宇. 氯盐-硫酸盐共存环境中杂散电流作用下提升砂浆中氯离子结合性能的研究[J]. 材料导报, 2021, 35(18): 18069-18075.
[11] 程晓红, 屈少华, 钟志成. 一种新型的α-氨基酸荧光传感器及其在酶活性检测中的应用[J]. 《材料导报》期刊社, 2018, 32(14): 2486-2490.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed