Please wait a minute...
材料导报  2024, Vol. 38 Issue (12): 22110292-12    https://doi.org/10.11896/cldb.22110292
  高分子与聚合物基复合材料 |
钯催化环加成反应构建中环化合物的研究进展
皮晓琳, 李鸿鹏, 田乙然, 童应成, 倪文若, 袁藤瑞, 唐振艳*
贵研铂业股份有限公司, 稀贵金属综合利用新技术国家重点实验室, 云南贵金属实验室有限公司, 昆明 650106
Advances in Palladium-Catalyzed Cycloaddition Reactions for the Construction of Medium-ring Compounds
PI Xiaolin, LI Hongpeng, TIAN Yiran, TONG Yingcheng, NI Wenruo, YUAN Tengrui, TANG Zhenyan*
State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Yunnan Precious Metals Lab Co., Ltd., Sino-Platinum Metals Co.,Ltd., Kunming 650106, China
下载:  全 文 ( PDF ) ( 9563KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 中环化合物(7—11元环)广泛存在于许多天然产物及药物等功能分子之中,这些分子因具有优异的生物活性及特殊的骨架结构等优点,展现出极其重要的药用价值,如常见的抗癌药物紫杉醇、抗菌药物Spiroxin A等。同时,这类化合物也对化学、医药以及材料等诸多领域产生了深远的影响。但受动力学和热力学因素影响,中环化合物的高效构建依然是一个严峻的挑战。在科研工作者们的不懈努力下,近年来发展出多个新型环加成反应催化体系,其中钯催化环加成反应凭借高效、高选择性和原子经济性等优点在该领域得到了迅猛发展。本文详细介绍了近五年国内外有关钯催化环加成反应构建中环化合物研究的最新进展,旨在为该领域的发展提供一定的帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
皮晓琳
李鸿鹏
田乙然
童应成
倪文若
袁藤瑞
唐振艳
关键词:  中环化合物  钯催化  环加成反应  环化反应  反应机理    
Abstract: The medium-ring compounds (7 to 11-membered rings) are widely found in functional molecules, such as many natural products and drugs. These molecules show great medicinal value due to their excellent biological activity and special backbone structure, exemplified by the common anti-cancer drug paclitaxel and the anti-bacterial drug Spiroxin A, and have also exerted a profound impact on many fields including chemistry, medicine and materials. However, the efficient construction of medium-ring compounds has long been a serious challenge, owing to the unfavorable kinetic and thermodynamic factors. Fortunately, thanks to the unremitting efforts of researchers, there have emerged and been proved effective several new catalytic systems for cycloaddition reactions in recent years, among which the palladium-catalyzed cycloaddition reactions have found rapid development in this field by virtue of high efficiency, high selectivity and atomic economy. This article details global research progress in the past five years on the use of palladium-catalyzed cycloaddition reactions to construct medium-ring compounds, expecting to provide helpful information and insight for the research community.
Key words:  medium-ring compounds    palladium-catalyzed    cycloaddition reactions    cyclization reactions    reaction mechanisms
出版日期:  2024-06-25      发布日期:  2024-07-17
ZTFLH:  O621  
基金资助: 国家重点研发计划(2022YFE0105100);云南省基础研究专项-重点项目(202101AS070049);云南贵金属实验室科技计划项目(YPML-2022050210;YPML-2022050232)
通讯作者:  *唐振艳,副研究员,硕士研究生导师,云南省万人计划 “青年拔尖人才”专项人才。2006年河北科技大学环境工程专业本科毕业,2009年昆明贵金属研究所工业催化专业硕士毕业,2013年厦门大学物理化学专业博士毕业。主要从事贵金属均相催化剂制备工艺及关键技术的研发工作。迄今为止,在ACS Catalysis、Physical Chemistry Chemical Physics、Surface Science、Langmuir、Catalysis Today等期刊上发表论文10余篇;授权中国发明专利4篇。tzy@ipm.com.cn   
作者简介:  皮晓琳,2019年6月、2022年6月分别于西华大学和云南大学获得理学学士学位和硕士学位。现为稀贵金属综合利用新技术国家重点实验室,云南贵金属实验室有限公司助理工程师,在唐振艳副研究员的指导下进行研究。目前主要从事贵金属新型功能材料的设计与制备。
引用本文:    
皮晓琳, 李鸿鹏, 田乙然, 童应成, 倪文若, 袁藤瑞, 唐振艳. 钯催化环加成反应构建中环化合物的研究进展[J]. 材料导报, 2024, 38(12): 22110292-12.
PI Xiaolin, LI Hongpeng, TIAN Yiran, TONG Yingcheng, NI Wenruo, YUAN Tengrui, TANG Zhenyan. Advances in Palladium-Catalyzed Cycloaddition Reactions for the Construction of Medium-ring Compounds. Materials Reports, 2024, 38(12): 22110292-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22110292  或          http://www.mater-rep.com/CN/Y2024/V38/I12/22110292
1 Li R, Xu X T, Ye M C. Chinese Journal of Organic Chemistry, 2020, 40(10), 3196 (in Chinese).
李然, 徐学涛, 叶萌春. 有机化学, 2020, 40(10), 3196.
2 Yet L. Chemical Reviews, 2000, 100(8), 2963.
3 Faulkner D J. Natural Product Reports, 1984, 1(3), 251.
4 Illuminati G, Mandolini L. Accounts of Chemical Research, 1981, 14(4), 95.
5 Galli C, Mandolini L. European Journal of Organic Chemistry, 2000, 2000(18), 3117.
6 Zhang X Y, Lin L, Li J, et al. Chinese Journal of Organic Chemistry, 2021, 41(5), 1878 (in Chinese).
张馨元, 林礼, 李静, 等. 有机化学, 2021, 41(5), 1878.
7 Yu X C, Zhang C C, Wang L T, et al. Organic Chemistry Frontiers, 2022, 9(11), 4757.
8 Wang C, Yang S, Huang Z, et al. Molecules, 2022, 27(6), 2.
9 Zhou W J, Zhang Y H, Cao G M, et al. Chinese Journal of Organic Chemistry, 2017, 37(6), 1322 (in Chinese).
周文俊, 张逸寒, 曹光梅, 等. 有机化学, 2017, 37(6), 1322.
10 Singh V, Sahu P K, Sahu B C, et al. Journal of Organic Chemistry, 2009, 74(16), 6092.
11 Wang L N, Yu Z X. Chinese Journal of Organic Chemistry, 2020, 40(11), 3536 (in Chinese).
王路宁, 余志祥. 有机化学, 2020, 40(11), 3536.
12 Baroncelli M, Mao Q, Galle S, et al. Physical Chemistry Chemical Phy-sics, 2020, 22(8), 4699.
13 Tao L, Wei Y, Shi M. Advanced Synthesis & Catalysis, 2021, 363(22), 5155.
14 Zhu C, Yang B, Mai B K, et al. Journal of the American Chemical Society, 2018, 140(43), 14324.
15 Souillart L, Cramer N. Chemical Reviews, 2015, 115(17), 9410.
16 Han Y P, Song X R, Qiu Y F, et al. Organic Letters, 2016, 18(5), 940.
17 Anand A, Singh P, Kumar V, et al. RSC Advances, 2019, 9(44), 25554.
18 Lainhart B C, Alexanian E J. Organic Letters, 2015, 17(5), 1284.
19 Trost B M, Shen H C, Horne D B, et al. Chemistry a European Journal, 2005, 11(8), 2577.
20 Mao Y H, Gao Y F, Miao Z W. Chinese Journal of Organic Chemistry, 2022, 42(7), 1904 (in Chinese).
毛沅浩, 高延峰, 苗志伟, 等. 有机化学, 2022, 42 (7), 1904.
21 Li M, Wang Y, Xu Y H. Chinese Journal of Organic Chemistry, 2021, 41(8), 3073 (in Chinese).
李曼, 汪颖, 徐允河. 有机化学, 2021, 41(8), 3073.
22 Daraie M, Heravi M M, Kazemi S S. Journal of Coordination Chemistry, 2019, 72(13), 2279.
23 Zhang L, Yang C, Guo X F, et al. Chinese Journal of Organic Chemistry, 2021, 41(9), 3492 (in Chinese).
张雷, 杨晨, 郭雪峰, 等. 有机化学, 2021, 41(9), 3492.
24 Zhao P, Huang Z Y, Zhao C S, et al. Journal of Heterocyclic Chemistry, 2019, 56(1), 108.
25 Chowdhury C, Sasmal A K, Achari B. Organic & Biomolecular Chemistry, 2010, 8(21), 4971.
26 Kawada H, Iwamoto M, Utsugi M, et al. Organic Letters, 2004, 6(24), 4491.
27 Yue G Z, Liu B. Chinese Journal of Organic Chemistry, 2020, 40(10), 3132 (in Chinese).
乐贵洲, 刘波. 有机化学, 2020, 40(10), 3132.
28 Trost B M, Huang Z, Murhade G M. Science, 2018, 362(6414), 564.
29 Perrin C L, Agranat I, Bagno A, et al. Pure and Applied Chemistry, 2022, 94(4), 353.
30 Huisgen R. Angewandte Chemie International Edition in English, 1963, 2(10), 565.
31 Jiang F, Yuan F R, Jin L W, et al. ACS Catalysis, 2018, 8(11), 10234.
32 Wang J, Blaszczyk S A, Li X, et al. Chemical Reviews, 2021, 121(1), 110.
33 Wang J, Zhao L, Zhu C, et al. Chinese Chemical Letters, 2022, 33(10), 4549.
34 Mao B M, Liu H L, Yan Z Y, et al. Angewandte Chemie International Edition, 2020, 59(28), 11316.
35 Trost B M, Zuo Z J. Angewandte Chemie International Edition, 2020, 59(3), 1243.
36 Jia Z L, An X T, Deng Y H, et al. Organic Letters, 2021, 23(3), 745.
37 Ohmatsu K, Kawai S, Imagawa N, et al. ACS Catalysis, 2014, 4(12), 4304.
38 Anschütz R, Leather W. Berichte der deutschen chemischen Gesellschaft, 2006, 18(1), 715.
39 Wender P A, Takahashi H, Witulski B. Journal of the American Chemical Society, 1995, 117(16), 4720.
40 Jiao L, Yu Z X. Journal of Organic Chemistry, 2013, 78(14), 6842.
41 Gao K, Zhang Y G, Wang Z M, et al. Chemical Communications, 2019, 55(13), 1859.
42 Wu Y, Yuan C H, Wang C, et al. Organic Letters, 2017, 19(23), 6268.
43 Li M M, Xiong Q, Qu B L, et al. Angewandte Chemie, 2020, 59(40), 17429.
44 Zhao H W, Ding W Q, Wang L R, et al. European Journal of Organic Chemistry, 2020, 2020(34), 5557.
45 Gao X, Zhu D Y, Chen Y H, et al. Organic Letters, 2020, 22(18), 7158.
46 Khan S, Ahmad T, Rasheed T, et al. Coordination Chemistry Reviews, 2022, 462.
47 Wang M, Huang Z J, Xu J F, et al. Journal of the American Chemical Society, 2014, 136(4), 1214.
48 Singha S, Patra T, Daniliuc C G, et al. Journal of the American Chemical Society, 2018, 140(10), 3551.
49 Zhang X, Li X, Li J L, et al. Chemical Science, 2020, 11(11), 2888.
50 Zheng Y, Qin T T, Zi W W. Journal of the American Chemical Society, 2021, 143(2), 1038.
51 Yang B, Zuo L H, Chang X W, et al. Organic Letters, 2021, 23(2), 351.
52 Fort A W. Journal of the American Chemical Society, 1962, 84(24), 4979.
53 Lam H, Lautens M. Synthesis Stuttgart, 2020, 52(17), 2427.
54 Selvaraj K, Chauhan S, Sandeep K, et al. Chemistry an Asian Journal, 2020, 15(16), 2380.
55 Cheng Q, Xie J H, Weng Y C, et al. Angewandte Chemie International Edition, 2019, 58(17), 5739.
56 Liu Y Z, Wang Z G, Huang Z S, et al. Angewandte Chemie International Edition, 2020, 59(3), 1238.
57 Kumari P, Liu W W, Wang C J, et al. Chinese Journal of Chemistry, 2020, 38(2), 151.
58 Dai W H, Li C P, Liu Y C, et al. Organic Chemistry Frontiers, 2020, 7(18), 2612.
59 Chai W W, Zhou Q Y, Ai W N, et al. Journal of the American Chemical Society, 2021, 143(9), 3595.
60 Zheng Y, Qin T Z, Zi W W. Journal of the American Chemical Society, 2021, 143(2), 1038.
61 Trost B M, Huang Z X. Angewandte Chemie International Edition, 2019, 58(19), 6396.
62 Rong Z Q, Yang L C, Liu S, et al. Journal of the American Chemical Society, 2017, 139(43), 15304.
63 Yuan C H, Wu Y, Wang D, et al. Advanced Synthesis & Catalysis, 2018, 360(4), 652.
64 Niu B, Wu X Y, Wei Y, et al. Organic Letters, 2019, 21(12), 4859.
65 Zhao H W, Wang L R, Guo J M, et al. Advanced Synthesis & Catalysis, 2019, 361(20), 4761.
66 Gao C, Wang X H, Liu J T, et al. Acs Catalysis, 2021, 11(5), 2684.
67 Li Q Y, Pan R, Wang M H, et al. Organic Letters, 2021, 23(6), 2292.
68 Okumura S, Sun F Z, Ishida N, et al. Journal of the American Chemical Society, 2017, 139(36), 12414.
69 Zhu M H, Zhang X W, Usman M, et al. ACS Catalysis, 2021, 11(9), 5703.
70 Yang L C, Rong Z Q, Wang Y N, et al. Angewandte Chemie International Edition, 2017, 56(11), 2927.
71 Yang G Q, Ke Y M, Zhao Y. Angewandte Chemie International Edition, 2021, 60(23), 12775.
72 Liu Y, He Y C, Liu Y, et al. Organic Chemistry Frontiers, 2021, 8(24), 7004.
73 Li Q Z, Guan Y L, Huang Q W, et al. ACS Catalysis, 2023.
74 Xia C, Wang D C, Qu G R, et al. Organic Chemistry Frontiers, 2020, 7(12), 1474.
75 Scuiller A, Karnat A, Casaretto N, et al. Organic Letters, 2021, 23(6), 2332.
76 Uno H, Imai T, Harada K, et al. ACS Catalysis, 2020, 10(2), 1454.
77 Xu H, Khan S, Li H, et al. Organic Letters, 2019, 21(1), 214.
78 Shintani R, Murakami M, Hayashi T. Journal of the American Chemical Society, 2007, 129(41), 12356.
79 You Y, Li Q, Zhang Y P, et al. Chemcatchem, 2022, 14(9), e202101887.
80 Cai W, Zhou Y M, He Y L, et al. Organic Letters, 2021, 23(14), 5430.
81 Shintani R, Murakami M, Tsuji T, et al. Organic Letters, 2009, 11(24), 5642.
82 Li K, Yang S, Zheng B, et al. Chemical Communications, 2022, 58(46), 6646.
83 Lee K R, Ahn S, Lee S G. Organic Letters, 2021, 23(9), 3735.
84 Xie H L, Yang Z K, Tang L N, et al. Chemical Communications, 2022, 58(75), 10560.
85 Liu Z T, Hu X P. Advanced Synthesis & Catalysis, 2019, 361(4), 836.
86 Krishnan K S, Kuthanapillil J M, Rajan R, et al. European Journal of Organic Chemistry, 2007, 2007(35), 5847.
87 Wei Y, Liu S, Li M M, et al. Journal of the American Chemical Society, 2019, 141(1), 133.
88 Das P, Gondo S, Nagender P, et al. Chemical Science, 2018, 9(13), 3276.
89 Mose R, Preegel G, Larsen J, et al. Nature Chemistry, 2017, 9(5), 487.
90 Wang Y N, Yang L C, Rong Z Q, et al. Angewandte Chemie International Edition, 2018, 57(6), 1596.
91 Uno H, Kawai K, Shiro M, et al. ACS Catalysis, 2020, 10(23), 14117.
92 Wu H H, Fan X Z, Tang Z, et al. Organic Letters, 2021, 23(7), 2802.
93 Doering W V, Wiley D W. Tetrahedron, 1960, 11(3), 183.
94 Zhang Q L, Xiong Q, Li M M, et al. Angewandte Chemie International Edition, 2020, 59(33), 14096.
[1] 梁李斯, 马洪月, 郭文龙, 张宇, 弥晗, 张自恒, 邢相栋. 锰基低温NH3-SCR催化剂脱除NOx的研究综述[J]. 材料导报, 2023, 37(22): 22010173-13.
[2] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[3] 李娜, 陈泽东, 王晶晶, 张凯, 武文斐. 基于氧化铈的低温NH3-SCR催化剂的研究进展[J]. 材料导报, 2022, 36(8): 20080137-8.
[4] 刘鑫, 黄亮, 竺清, 李孝建, 郭俊艳, 张海军. 钯催化乙炔半加氢反应的研究进展[J]. 材料导报, 2022, 36(20): 20090171-9.
[5] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[6] 张小涛, 李庆超, 李东旭. 碳基材料对水泥基材料性能的影响[J]. 材料导报, 2021, 35(Z1): 220-224.
[7] 周顺, 周涵, 李东旭. 硅基材料和矿渣应用于水泥基材料的研究进展[J]. 材料导报, 2021, 35(Z1): 284-287.
[8] 杨达, 卢明阳, 宋迪, 白书霞, 张国华, 胡秀颖, 庞来学. 地质聚合物水泥的研究进展[J]. 材料导报, 2021, 35(Z1): 644-649.
[9] 陈侣存, 崔雯, 陈鹏, 李康璐, 董帆, 王法理. 宽带隙金属氧化物材料光催化降解苯系物:反应机理和改性策略[J]. 材料导报, 2021, 35(21): 21001-21011.
[10] 王金朋, 薛志超, 马颖, 李洁, 刘思丹, 孙红. 基于第一性原理的锂空气电池Si掺杂MoS2正极催化氧还原反应机理研究[J]. 材料导报, 2021, 35(10): 10001-10007.
[11] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[12] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[13] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[14] 李东翰,廖明义. 氟橡胶在碱性环境中脱氟化氢反应机理及其结构[J]. 《材料导报》期刊社, 2018, 32(10): 1730-1736.
[15] 张显峰, 赵朝成, 王德军, 赵媛媛, 张勇, 郭锐. 基于SnO2/Fe3O4粒子电极的三维电极体系的电催化性能*[J]. 《材料导报》期刊社, 2017, 31(8): 25-30.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed