Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (10): 1730-1736    https://doi.org/10.11896/j.issn.1005-023X.2018.10.030
  计算模拟 |
氟橡胶在碱性环境中脱氟化氢反应机理及其结构
李东翰,廖明义
大连海事大学交通运输工程学院,大连116026
Dehydrofluorination Mechanisms and Structures of Fluoroelastomers in Alkaline Environments
LI Donghan, LIAO Mingyi
Transportation Engineering College, Dalian Maritime University, Dalian 116026
下载:  全 文 ( PDF ) ( 3889KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究26型氟橡胶 (偏氟乙烯-六氟丙烯二元共聚物)和246型氟橡胶(偏氟乙烯-四氟乙烯-六氟丙烯三元共聚物)在碱性环境中所发生的反应,本文对其反应机理进行了系统的讨论。采用红外(FTIR)、氢谱 (1H-NMR)和氟谱核磁(19F-NMR)对氟橡胶反应前、后的分子链结构进行了分析,并对不同序列结构双键及羟基含量进行了计算。结果表明,26型和246型氟橡胶在碱性环境中发生脱氟化氢反应时,会伴随着双键重排及氧化反应的发生。其中,26型氟橡胶遵循以Zaitsev规则消除反应为主、Hofmann规则消除反应为辅的脱氟化氢反应,在分子链中5个位置出现了双键;而246型氟橡胶则与之相反,遵循以Hofmann规则消除反应为主、Zaitsev规则消除反应为辅的脱氟化氢反应,在分子链中7个位置出现了双键;两种氟橡胶中遵循Hofmann规则进行消除反应所产生的双键会被氧化为羟基;相同条件下,反应后246型氟橡胶的双键和羟基含量均高于26型氟橡胶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李东翰
廖明义
关键词:  氟橡胶    脱氟化氢  反应机理  结构    
Abstract: In order to reveal how the dehydrofluorination of poly(VDF-co-HFP) copolymer and poly(VDF-ter-HFP-ter-TFE) terpolymer takes place in alkaline environment, the reaction mechanisms of different fluoroelastomers were studied systematically in this paper. Not only the chain structures of fluoroelastomers, but also the sequence types and contents of double bonds and other oxygen-containing groups of products were all analyzed and investigated by Attenuated total reflectance/Fourier transform infrared (ATR-FTIR),1H nuclear magnetic resonance (NMR),19F-NMR spectroscopy. The results revealed that when two kinds of fluo-roelastomers exist in alkaline environment, the dehydrofluorination would accompain with rearrangement reaction and oxidation reaction. The dehydrofluorination of poly(VDF-co-HFP) copolymer was mainly conformed to Zaitsev’s rule and Hofmann’s rule supplemented, the double bonds generated in five positions of molecular chains. In contrast, the dehydrofluorination of poly(VDF-ter-HFP-ter-TFE) terpolymer was opposite, which was mainly conformed to Hofmann’s rule and Zaitsev’s rule supplemented, the double bonds generated in seven positions of molecular chains. Furthermore, with the oxidation reaction occurring, the sequence types of double bonds which were conformed to Hofmann’s rule would be converted to hydroxyl groups. Under the same conditions, the contents of double bonds and hydroxyl of poly(VDF-ter-HFP-ter-TFE) terpolymer were higher than that of poly(VDF-co-HFP) copolymer after the reaction.
Key words:  fluoroelastomer    alkali    dehydrofluorination    mechanism    structure
               出版日期:  2018-05-25      发布日期:  2018-07-06
ZTFLH:  TQ333.93  
基金资助: 国家国际科技合作专项资助项目(2015DFR40500)
通讯作者:  廖明义:男,1962年生,博士,教授,博士研究生导师,主要从事新型功能高分子材料、元素杂化聚合物及氟、硅聚合物的合成和应用等研究 E-mail:liaomy2000@sohu.com   
作者简介:  李东翰:男,1987年生,博士研究生,主要从事含氟聚合物的合成、官能化及其性能评价等研究
引用本文:    
李东翰,廖明义. 氟橡胶在碱性环境中脱氟化氢反应机理及其结构[J]. 《材料导报》期刊社, 2018, 32(10): 1730-1736.
LI Donghan, LIAO Mingyi. Dehydrofluorination Mechanisms and Structures of Fluoroelastomers in Alkaline Environments. Materials Reports, 2018, 32(10): 1730-1736.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.10.030  或          http://www.mater-rep.com/CN/Y2018/V32/I10/1730
1 Robert C K. Handbook of specialty elastomers[M]. New York:Taylor & Francis Group,2008:133.
2 Maclachlan J D. Fluorocarbon elastomers:A technical review[J]. Polymer-plastics Technology and Engineering,1978,11:41.
3 Ameduri B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: Recent developments and future trends[J]. Chemical Reviews,2009,109:6632.
4 Abdelhamid M I, Aboelwafa A M, Elhadidy H, et al. Investigation of the structure and piezoelectricity of poly(vinylidene fluoride-trifluroethylene) copolymer doped with different dyes[J]. International Journal of Polymeric Materials,2012,61:505.
5 Ameduri B. Controlled radical (co)polymerization of fluoromonomers[J]. Macromolecules,2010,43:10163.
6 Vijayakumar G, Karthick S N, Paramasivam R, et al. Morphology and electrochemical properties of P(VDF-HFP)/MgO-based compo-site microporous polymer electrolytes for Li-ion polymer batteries[J]. Polymer-plastics Technology and Engineering,2012,51:1427.
7 Li D H, Qi S C, Zhang X A, et al. Preparation, functionalization and properties of low molecular fluoropolymers[J]. Progress in Chemistry,2016,28(5):673 (in Chinese).
李东翰,齐士成,张孝阿,等.低分子量含氟聚合物的制备、官能化及特性[J].化学进展,2016,28(5):673.
8 Anilkumar R, Burton D J. A highly efficient room temperature non-organometallic route for the synthesis of α,β,β-trifluorostyrenes by dehydrohalogenation[J]. Tetrahedron Letter,2003,44:6661.
9 Li J, Lu Y F, Liu Y, et al. Synthesis, characterization, curing and properties of carboxyl-terminated liquid fluoropolymers[J]. Polymer-plastics Technology and Engineering,2014,53:46.
10 Schmiegel W W. Crosslinking of elastomeric vinylidene fluoride copolymers with nucleophiles[J]. Angewandte Makromolekulare Chemie,1979,77:39.
11 Mitra S, Siahkali A G, Kingshott P, et al. Chemical degradation of an uncrosslinked pure fluororubber in an alkaline environment[J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,42:6216.
12 Mitra S, Siahkali A G, Kingshott P. Chemical degradation of fluoroe-lastomer in an alkaline environment[J]. Polymer Degradation and Stability,2004,83:195.
13 Smith M B, March J. March’s advanced organic chemistry[M]. New York: John Wiley & Sons,2001:620.
14 Feit N I, Saunders Jr W H. Mechanisms of elimination reactions. XV. Effect of base, solvent, and structure on product ratios in elimi-nation reactions of some quaternary ammo-nium salts[J]. Journal of the American Chemical Society,1970,92:5615.
15 Gent B B, McKenna J. Stereochemical investigation of cyclic bases. Part IV. Hofmann degradation of 6α-and 6β-cholestanyltrimethylammonium salts[J]. Journal of the Chemical Society,1959,42:137.
16 Hughes E D, Wilby J. Mechanism of elimination reactions. Part XXII. Anomalous elimination from the trimethylneomenthylammo-nium ion[J]. Journal of the Chemical Society, DOI:10.1039/jr96000040941960.
17 Rossa G J, Watts J F, Hill M P, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment 1. The degradation me-chanism[J]. Polymer,2000,41:1685.
18 李东翰,廖明义.不饱和含氟聚合物的制备方法:中国,106117395A[P].2016-06-23.
19 Saint L R, Manseri A, Ameduri B, et al. Synthesis and properties of novel fluorotelechelic macrodiols containing vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene[J]. Macromolecules,2002,35:1524.
20 Taguet A, Ameduri B, Boutevin B. Grafting of commercially available amines bearing aromatic rings onto poly(vinylidene-co-hexafluo-ropropene) copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry,2006,44:1855.
21 Ross G J, Watts J F, Hill M P, et al. Surface modification of poly(vinylidene fluoride) by alkaline treatment Part 2. Process modification by the use of phase transfer catalysts[J]. Polymer,2001,42:403.
22 Li D H, Liao M Y. Dehydrofluorination mechanism, structure and
thermal stability of pure fluoroelastomer (poly(VDF-ter-HFP-ter-TFE) terpolymer) in alkaline environment[J]. Journal of Fluorine Chemistry,2017,201:55.
23 Souzy R, Ameduri B, Ahsen S V, et al. Use of bis(trifluoromethyl)peroxy dicarbonate as initiator in the radical homopolymerisation of vinylidene fluoride (VDF) and copolymerisation of VDF with hexafluoropropylene[J]. Journal of Fluorine Chemistry,2003,123:85.
24 Souzy R, Boutevin B, Ameduri B. Synthesis and characterizations of novel proton-conducting fluoropolymer electrolyte membranes based on poly(vinylidene fluoride-ter-hexafluoropropylene-ter-α-trif-luoromethacrylic acid) terpolymers grafted by aryl sulfonic acids[J]. Macromolecules,2012,4:3145.
25 Pianca M, Bonardelli P, Tat M, et al. Composition and sequence distribution of vinylidene fluoride copolymer and terpolymer fluoroelastomers. Determination by19F nuclear magnetic resonance spectroscopy and correlation with some properties[J]. Polymer,1987,28:224.
26 Valade D, Boschet F, Ameduri B. Synthesis and modification of alternating copolymers based on vinyl ethers, chlorotrifluoroethylene, and hexafluoropropylene[J]. Macromolecules,2009,42:7689.
27 Kader M A, Bhowmick A K. Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates[J]. Polymer Degradation and Stability,2003,79:283.
28 Silverstein R M, Webster F X, Kiemle D J. Spectrometric identification of organic compounds[M]. New York: John Wiley & Sons,2005:191.
29 Li D H, Liao M Y. Preparation of telechelic hydroxyl low molecular weight fluoropolymers[J]. Key Engineering Materials,2017,753:93.
30 Yang Z Y. Addition reaction of halogens to vinyl(pentafluorocyclopropanes): Competition between a radical addition and an electrophilic addition[J]. Journal of Organic Chemistry,2003,68:5419.
31 Cheburkov Y, Moore G G I. 2,2-Dihydroperfluoropentane (HFC 4310 mf) synthesis from HFP dimmer[J]. Journal of Fluorine Chemistry,2003,123:227.
32 Paciorek K L, Mitchell L C, Lenk C T. Mechanism of amine crosslinking of fluoroelastomers. I. Solution studies[J]. Journal of Polymer Science,1960,45:405.
33 Krespan C G, Dixon D A. Fluoroolefin condensation catalyzed by aluminum chlorofluoride[J]. Journal of Fluorine Chemistry,1996,77:117.
34 Taguet A, Sauguet L, Ameduri B. Fluorinated cotelomers based on vinylidene fluoride (VDF) and hexafluoropropene (HFP): Synthesis, dehydrofluorination and grafting by amine containing an aroma-tic ring[J]. Journal of Fluorine Chemistry,2007,128:619.
35 Pianca M, Barchiesi E, Esposto G, et al. End groups in fluoropolymers[J]. Journal of Fluorine Chemistry,1999,95:71.
36 Taguet A, Ameduri B, Boutevin B. Crosslinking of vinylidene fluo-ride-containing fluoropolymers[J]. Advances in Polymer Science,2005,184:127.
37 Brame E G. Spectra-structure correlations in nuclear spin resonances of fluorine-19[J]. Analytical Chemistry,1962,34:591.
[1] 韩应强, 孙爱民, 潘晓光, 张伟, 赵锡倩. Y3+掺杂对Ni-Cu-Zn铁氧体纳米颗粒结构和磁性能的影响[J]. 材料导报, 2019, 33(z1): 343-347.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[4] 王惠芬, 刘刚, 曹康丽, 杨碧琦, 徐骏, 兰少飞, 张丽新. 碳纳米管材料在航天器上的应用研究现状及展望[J]. 材料导报, 2019, 33(z1): 78-83.
[5] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[6] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[7] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[8] 巢云秀, 杨宏伟, 原禧敏, 李郁秀, 李耀. 花枝状纳米银的制备及对4-硝基苯酚加氢反应的催化性能[J]. 材料导报, 2019, 33(z1): 307-309.
[9] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[10] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[11] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[12] 苏力军, 张丽娟, 宋寒, 郭慧, 郭建业, 李文静, 杨洁颖, 裴雨辰. 非压力浸渍成型技术制备夹层结构气凝胶外防热材料[J]. 材料导报, 2019, 33(z1): 206-210.
[13] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[14] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[15] 李景文, 乔建刚, 付旭, 刘晓立. 岩土锚固吸能锚杆支护材料/结构及其力学性能研究进展[J]. 材料导报, 2019, 33(9): 1567-1574.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed