Research Progress in Nuclear Radiation Comprehensive Shielding Materials
GAO Jing1, DING Qianxue1, MEI Qiliang1,*, XIAO Xueshan2
1 Shanghai Nuclear Engineering Research & Design Institute Co., Ltd., Shanghai 200233, China 2 Institude of Materials, Shanghai University, Shanghai 200072, China
Abstract: The rapid development of nuclear energy technology has brought about hidden dangers of radiation safety. In order to protect the health of personnel and the safety of the surrounding environment, a shield must be used for protection. The complexity of the nuclear facility structure as well as the diversity of application scenarios puts forward higher requirements for the performance of comprehensive shielding materials. Materials not only have excellent neutron and γ-ray shielding functions, but also have remarkable mechanical properties to be used as structural materials. This article briefly describes the design requirements of nuclear radiation comprehensive shielding materials. According to the research status of shielding materials at home and abroad, the research progress of commonly used radiation shielding materials is reviewed. Through comparative analysis of the shielding performance of metallic and non-metallic materials, the research content, characteristics and problems of various substrates and functional filler materials are summarized. It is proposed that the structure/function integrated shielding material has become the development direction. And the application of nickel-based composites containing rare earth elements will become the focus of further research, which provides a reference for the development and application of new radiation shielding materials.
作者简介: 高静,上海核工程研究设计院股份有限公司助理工程师。2018年6月、2021年4月分别在南华大学和南京航空航天大学取得工学学士和硕士学位。目前从事新型辐射屏蔽材料研发、辐射屏蔽分析与设计工作,发表SCI学术论文5篇,包括Journal of Applied Physics、Journal of Materials Science、Nuclear Materials and Energy等。
引用本文:
高静, 丁谦学, 梅其良, 肖学山. 核辐射综合屏蔽材料研究进展[J]. 材料导报, 2023, 37(20): 21120255-8.
GAO Jing, DING Qianxue, MEI Qiliang, XIAO Xueshan. Research Progress in Nuclear Radiation Comprehensive Shielding Materials. Materials Reports, 2023, 37(20): 21120255-8.
1 Hu C. Study on thermal stability and mechanical properties of high temperature Gd-MOF/polymer shielding composites. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese). 胡琛. 耐高温Gd-MOF/高分子复合屏蔽材料热稳定性及机械性能研究. 博士学位论文, 中国科学技术大学, 2020. 2 Su W B, Gu X X, Zou H, et al. Chemical Researches, 2001, 12(4), 1008. 3 Jian X, Xiong W H, Zeng A X, et al. Chinese Rare Earths, 2004, 25(6), 68. 4 Yang F J, Lu F Q. Applied nuclear physics, Higher Education Press, China, 2018(in Chinese). 杨福家, 陆福全. 应用核物理, 高等教育出版社, 2018. 5 Erdem M, Baykara O, Dogru M, et al. Radiation Physics and Chemistry, 2010, 79, 917. 6 Daungwilailuk T, Yenchai C, Rungjaroenkiti W, et al, Construction and Building Materials, 2022, 326, 126838. 7 Lu Y, Qin Y, Wang J, et al. Construction and Building Materials, 2022, 327, 126950. 8 Piotrowski T, Tefelski D, Sokolowska J, et al. Acta Physica Polonica A, 2015, 128(2B), 10. 9 EI-Sayed A W, Mohamed A B. Annals of Nuclear Energy, 2015, 85, 306. 10 Yuan L L. Research on preparative technique of metal composite contained boron for nuclear shielding. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016(in Chinese). 元琳琳. 核屏蔽用高硼金属复合材料的制备技术基础研究. 博士学位论文, 北京科技大学, 2016. 11 Kharita M H, Yousef S, AlNassar M. Progress Nuclear Energy, 2010, 52, 491. 12 More C V, Alsayed Z, Badawi M, et al. Environmental Chemistry Letters, 2021, 19(3), 2057. 13 Dokhale P, Bhoraskar V, Vijayaraghavan P. Materials Science and Engineering: B, 1998, 57(1), 1. 14 Shin J W, Lee J W, Yu S, et al. Thermochimica Acta, 2014, 585, 5. 15 Abdulrahman S T, Patanair B, Vasukuttan V P, et al. Express Polymer Letters, 2022, 16(6), 012010. 16 Xu H, Liu D, Sun W, et al. Materials, 2022, 15(9), 2978. 17 Özdemir T, Y¦lmaz S N. Radiation Physics and Chemistry, 2018, 152, 93. 18 Cao D, Yang G, Bourtham M, et al. Nuclear Engineering and Tcjnology, 2020, 52(11), 2613. 19 EI-Sayed A A, EI-Sarraf M A, Gaber F A. Annals of Nuclear Energy, 2003, 30, 175. 20 Eren B E, Aycik G A. Journal of Radioanalytical & Nuclear Chemistry, 2017, 311, 1953. 21 Li R, Gu Y Z, Yang Z J, et al. Materials and Design, 2017, 124, 121. 22 Reda A M, Kansouh W A, Eid E A. Physica Scripta, 2022, 97(6), 065301. 23 Huo Z, Zhao S, Zhong G, et al. Nuclear Materials and Energy, 2021, 29, 101095. 24 Fu F. Study on the forming processes and properties of composite powswe manufactured by selective laser sinering. Master’s Thesis, South China University of Technology, China, 2019(in Chinese). 付凡. 辐射屏蔽复合材料激光选取烧结工艺基性能研究. 硕士学位论文, 华南理工大学, 2019. 25 Wu Y, Cao Y, Wu Y, et al. Materials, 2020, 13(20), 4475. 26 Wu Y, Cao Y, Wu Y, et al. Materials, 2020, 13(20), 2314. 27 Li K F, Wang Z F, Liu C Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(2), 552(in Chinese). 李坤锋, 王子凡, 刘春雨, 等. 硅酸盐通报, 2020, 39(2), 552. 28 Bartoli L, Becherini F, Grazzi F, et al. Nuclear Instruments and Methods in Physics Research A, 2009, 608, 360. 29 Duan Y H, Zhu P X, Sun Y. Sciencepaper Online, 2007, 2(5), 359(in Chinese). 段永华, 竺培显, 孙勇. 中国科技论文在线, 2007, 2(5), 359. 30 Wang W, Xiong L, Zhu H Y, et al. Journal of Iron and Steel Research, 2015, 27(12), 36(in Chinese). 王炜, 熊力, 朱航宇, 等. 钢铁研究学报, 2015, 27(12), 36. 31 Murari F D, Silva A V, Avillez R R, et al. Journal of Materials Research and Technology, 2015, 4(2), 191. 32 Shao Z Z, Wang C L, Song Y T. Nuclear Fusion and Plasma Physics, 2011(4), 350(in Chinese). 邵珠振, 王传礼, 宋云涛. 核聚变与等离子体物理, 2011(4), 350. 33 Institute E P R. Handbook on neutron absorber materials for spent nuclear fuel applications. EPRI, USA, 2009. 34 Nai Q L, Zheng W J, Song Z G, et al. Journal of Iron and Steel Research, 2013, 25(6), 53(in Chinese). 佴启亮, 郑文杰, 宋志刚, 等. 钢铁研究学报, 2013, 25(6), 53. 35 Levet A, Kavaz E, Zdemir Y. Journal of Alloys and Compounds, 2020, 819, 152946. 36 Wang Y R, Zhao Y, Jiang M Z, et al. Journal of Netshape Forming Engineering, 2019, 11(3), 166. 37 Greuner H, Balden M, Boeswirth B, et al. Journal of Nuclear Materials, 2004, 329, 849. 38 Yuan Q S. The effect of Zr、Cr、Ni on the microstructure of high boron steel. Master’s Thesis, Xihua University, China, 2009(in Chinese). 袁亲松. Zr、Cr、Ni对高硼钢组织的影响. 硕士学位论文, 西华大学, 2009. 39 Akkurt I, Calik A, Akyldrm H. Nuclear Engineering and Design, 2011, 241(1), 55. 40 Jiang J, Zhao P. Foundry, 2009, 58(1), 75(in Chinese). 蒋军, 赵平. 铸造, 2009, 58(1), 75. 41 Liu J Q, Gong J X, Zhang L C. Heat Treating of Metals, 2017, 42(6), 142(in Chinese). 刘江晴, 龚建勋, 张立成. 金属热处理, 2017, 42(6), 142. 42 Yang W F, Liu Y. Materials Reports, 2009, 23(5), 52(in Chinese). 杨文锋, 刘颖. 材料导报, 2009, 23(5), 52. 43 Liu T, Yu Z H, Zhao J H, et al. Light Alloys Fabrication Technology. 2014, 42(1), 25(in Chinese). 刘涛, 于智宏, 赵建华, 等. 轻合金加工技术, 2014, 42(1), 25. 44 Li G, Jian M, Wang M L, et al. Materials Reports, 2011, 25(7), 110. 李刚, 简敏, 王美玲, 等. 材料导报, 2011, 25(7), 110. 45 Kenneth D K. Nuclear engineering handbook, CRC Press, USA, 2009. 46 Yang J, Ma S W, Liu K, et al. Chinese Journal of Rare Metals, 2018, 12, 1267(in Chinese). 杨剑, 马书旺, 刘坤, 等. 稀有金属, 2018, 42(12), 1267. 47 Arslan G, Kara F, Turan S. Journal of the European Ceramic Society, 2003, 23(8), 1243. 48 Wang Y R, Zhao Y, Jiang M Z, et al. Journal of Netshape Forming Engineering, 2019, 11(3), 166(in Chinese). 王玉荣, 赵勇, 蒋命中, 等. 精密成形工程, 2019, 11(3), 166. 49 Amirhossein Rahimi, Hamidreza Baharvandi. International Journal of Refractory Metals and Hard Materials, 2017, 66, 220. 50 Zhou Y C. Study on design and properties of Tungsten-Boron compound/Aluminum shielding composites. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese). 周玉超. 钨硼化物/铝复合屏蔽材料设计及性能研究. 硕士学位论文, 哈尔滨工业大学, 2019. 51 Zhang P, Li J, Wang W X, et al. Atomic Energy Science and Technology, 2019, 53(3), 434(in Chinese). 张鹏, 李靖, 王文先, 等. 原子能科学技术, 2019, 53(3), 434. 52 Sayyed M I, Mohammed F Q, et al. Applied Science, 2020, 10, 7680. 53 Zhang Y. Design and preparation of Nickel-based foam metal neutron shielding composite materials. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017(in Chinese). 张云. 镍基泡沫金属中子屏蔽复合材料的设计与制备. 硕士学位论文, 南京航空航天大学, 2017. 54 Jones R B, Younes C M, Heard P J, et al. Acta Materialia, 2002, 50(17), 4395. 55 Natarajan S, Gopalan V, Rajan R A, et al. Materials, 2021, 14(7), 1660. 56 Zeng X Y. Science Technology and Engineering, 2020, 20(35), 14352(in Chinese). 曾小义. 科学技术与工程, 2020, 20(35), 14352. 57 Xiang Y, Chen Z G, Wei X, et al. Rare Metal Materials and Engineering, 2015, 44(6), 1335. 58 Robino C V, Michael J R, Dupont J N. Journal of Materials Engineering and Performance, 2003, 12(2), 206. 59 Xu Z G, Jiang L T, Zhang Q, et al. Journal of Alloys and Compounds, 2017, 729, 1234. 60 Wang W X, Zhang J, Wan S P, et al. Fusion Engineering and Design, 2021, 171, 112566. 61 Michael J M. The investigation of the toughness of a Ni base alloy with Gd enrichment for spent nuclear waste containmensystems. Master’s Thesis, Lehigh University, USA, 2005. 62 Ronald E M, Lister T E, Pinhero P J, et al. In: NACE Annual Confe-rence & Exposition. California, 2003, pp. 18. 63 Mizia R E, Lister T E, Pinhero P J, et al. Nuclear Technology, 2006, 155, 133. 64 Lister T E, et al. Corrosion, 2005, 61, 706. 65 Wu Z Y. Microstructure and properties of new Gd riched Ni-based alloys. Ph. D. Thesis, Shanghai University, China, 2019(in Chinese). 武昭妤. 新型富Gd镍基合金的微观组织及性能研究. 博士学位论文, 上海大学, 2019. 66 Jae Y K, Jae H J, Sung-Dae K, et al. Journal of Nuclear Materials, 2020, 542, 152462. 67 Wang L W, Tang D W, Zou S L. Metal Materials and Metallurgy Engineering, 2019, 47(3), 8(in Chinese). 王利伟, 唐德文, 邹树梁. 金属材料与冶金工程, 2019, 47(3), 8. 68 Zhang Y Y. Study on preparation, microstructure and properties of(W+B)/Al composites. Master’s Thesis, Taiyuan University of Technology, China, 2019(in Chinese). 张宇阳.(W+B)/Al复合材料的制备与组织性能研究. 硕士学位论文, 太原理工大学, 2019. 69 El-Agawany F I, Ekinci N, Mahmoud K A, et al. The European Physical Journal Plus, 2021, 136, 527. 70 Ekinci N, El-Agawany F I, Mahmoud K A, et al. Radiation Physics and Chemistry, 2021, 186, 109483. 71 Bünyamin Aygün. Radiation Physics and Chemistry, 2021, 183, 109630.