Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 21120255-8    https://doi.org/10.11896/cldb.21120255
  无机非金属及其复合材料 |
核辐射综合屏蔽材料研究进展
高静1, 丁谦学1, 梅其良1,*, 肖学山2
1 上海核工程研究设计院股份有限公司,上海 200233
2 上海大学材料研究所,上海 200072
Research Progress in Nuclear Radiation Comprehensive Shielding Materials
GAO Jing1, DING Qianxue1, MEI Qiliang1,*, XIAO Xueshan2
1 Shanghai Nuclear Engineering Research & Design Institute Co., Ltd., Shanghai 200233, China
2 Institude of Materials, Shanghai University, Shanghai 200072, China
下载:  全 文 ( PDF ) ( 3143KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 核能技术的快速发展带来了辐射安全隐患,为保护人员的身体健康与周围环境的安全必须采取屏蔽体进行防护。核设施结构的复杂性以及应用场景的多样性对核辐射综合屏蔽材料的性能提出更高的要求,材料不仅要具备优异的中子/γ屏蔽功能,还应具有优异的力学性能以作为结构材料使用。本文简述了核辐射综合屏蔽材料的设计要求,并根据国内外屏蔽材料的研究现状,综述了常用的辐射屏蔽材料的研究进展,对比分析金属与非金属材料的屏蔽性能,总结了不同基体与功能填料的研究内容、特点以及存在的问题,提出了屏蔽材料结构/功能一体化已成为发展方向,指出含稀土元素的镍基复合材料在防辐射屏蔽材料方面的应用将成为进一步研究的重点,为新型辐射屏蔽材料的研制应用提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高静
丁谦学
梅其良
肖学山
关键词:  屏蔽材料  中子  γ射线  辐射防护    
Abstract: The rapid development of nuclear energy technology has brought about hidden dangers of radiation safety. In order to protect the health of personnel and the safety of the surrounding environment, a shield must be used for protection. The complexity of the nuclear facility structure as well as the diversity of application scenarios puts forward higher requirements for the performance of comprehensive shielding materials. Materials not only have excellent neutron and γ-ray shielding functions, but also have remarkable mechanical properties to be used as structural materials. This article briefly describes the design requirements of nuclear radiation comprehensive shielding materials. According to the research status of shielding materials at home and abroad, the research progress of commonly used radiation shielding materials is reviewed. Through comparative analysis of the shielding performance of metallic and non-metallic materials, the research content, characteristics and problems of various substrates and functional filler materials are summarized. It is proposed that the structure/function integrated shielding material has become the development direction. And the application of nickel-based composites containing rare earth elements will become the focus of further research, which provides a reference for the development and application of new radiation shielding materials.
Key words:  shielding material    neutron    γ-ray    radiation protection
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TL7  
通讯作者:  *梅其良,上海核工程研究设计院股份有限公司研究员级高级工程师。1998年在上海交通大学取得工学学士学位。担任中国辐射防护学会常务理事、能源行业核电标准化和全国核能标准化技术委员会辐射防护及应急标准组委员。长期从事辐射防护设计、辐射防护标准审查、源项分析、事故后果评价等方面的研究工作。共发表核心期刊论文20余篇。mql@snerdi.com.cn   
作者简介:  高静,上海核工程研究设计院股份有限公司助理工程师。2018年6月、2021年4月分别在南华大学和南京航空航天大学取得工学学士和硕士学位。目前从事新型辐射屏蔽材料研发、辐射屏蔽分析与设计工作,发表SCI学术论文5篇,包括Journal of Applied Physics、Journal of Materials Science、Nuclear Materials and Energy等。
引用本文:    
高静, 丁谦学, 梅其良, 肖学山. 核辐射综合屏蔽材料研究进展[J]. 材料导报, 2023, 37(20): 21120255-8.
GAO Jing, DING Qianxue, MEI Qiliang, XIAO Xueshan. Research Progress in Nuclear Radiation Comprehensive Shielding Materials. Materials Reports, 2023, 37(20): 21120255-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120255  或          http://www.mater-rep.com/CN/Y2023/V37/I20/21120255
1 Hu C. Study on thermal stability and mechanical properties of high temperature Gd-MOF/polymer shielding composites. Ph. D. Thesis, University of Science and Technology of China, China, 2020(in Chinese).
胡琛. 耐高温Gd-MOF/高分子复合屏蔽材料热稳定性及机械性能研究. 博士学位论文, 中国科学技术大学, 2020.
2 Su W B, Gu X X, Zou H, et al. Chemical Researches, 2001, 12(4), 1008.
3 Jian X, Xiong W H, Zeng A X, et al. Chinese Rare Earths, 2004, 25(6), 68.
4 Yang F J, Lu F Q. Applied nuclear physics, Higher Education Press, China, 2018(in Chinese).
杨福家, 陆福全. 应用核物理, 高等教育出版社, 2018.
5 Erdem M, Baykara O, Dogru M, et al. Radiation Physics and Chemistry, 2010, 79, 917.
6 Daungwilailuk T, Yenchai C, Rungjaroenkiti W, et al, Construction and Building Materials, 2022, 326, 126838.
7 Lu Y, Qin Y, Wang J, et al. Construction and Building Materials, 2022, 327, 126950.
8 Piotrowski T, Tefelski D, Sokolowska J, et al. Acta Physica Polonica A, 2015, 128(2B), 10.
9 EI-Sayed A W, Mohamed A B. Annals of Nuclear Energy, 2015, 85, 306.
10 Yuan L L. Research on preparative technique of metal composite contained boron for nuclear shielding. Ph. D. Thesis, University of Science and Technology Beijing, China, 2016(in Chinese).
元琳琳. 核屏蔽用高硼金属复合材料的制备技术基础研究. 博士学位论文, 北京科技大学, 2016.
11 Kharita M H, Yousef S, AlNassar M. Progress Nuclear Energy, 2010, 52, 491.
12 More C V, Alsayed Z, Badawi M, et al. Environmental Chemistry Letters, 2021, 19(3), 2057.
13 Dokhale P, Bhoraskar V, Vijayaraghavan P. Materials Science and Engineering: B, 1998, 57(1), 1.
14 Shin J W, Lee J W, Yu S, et al. Thermochimica Acta, 2014, 585, 5.
15 Abdulrahman S T, Patanair B, Vasukuttan V P, et al. Express Polymer Letters, 2022, 16(6), 012010.
16 Xu H, Liu D, Sun W, et al. Materials, 2022, 15(9), 2978.
17 Özdemir T, Y¦lmaz S N. Radiation Physics and Chemistry, 2018, 152, 93.
18 Cao D, Yang G, Bourtham M, et al. Nuclear Engineering and Tcjnology, 2020, 52(11), 2613.
19 EI-Sayed A A, EI-Sarraf M A, Gaber F A. Annals of Nuclear Energy, 2003, 30, 175.
20 Eren B E, Aycik G A. Journal of Radioanalytical & Nuclear Chemistry, 2017, 311, 1953.
21 Li R, Gu Y Z, Yang Z J, et al. Materials and Design, 2017, 124, 121.
22 Reda A M, Kansouh W A, Eid E A. Physica Scripta, 2022, 97(6), 065301.
23 Huo Z, Zhao S, Zhong G, et al. Nuclear Materials and Energy, 2021, 29, 101095.
24 Fu F. Study on the forming processes and properties of composite powswe manufactured by selective laser sinering. Master’s Thesis, South China University of Technology, China, 2019(in Chinese).
付凡. 辐射屏蔽复合材料激光选取烧结工艺基性能研究. 硕士学位论文, 华南理工大学, 2019.
25 Wu Y, Cao Y, Wu Y, et al. Materials, 2020, 13(20), 4475.
26 Wu Y, Cao Y, Wu Y, et al. Materials, 2020, 13(20), 2314.
27 Li K F, Wang Z F, Liu C Y, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(2), 552(in Chinese).
李坤锋, 王子凡, 刘春雨, 等. 硅酸盐通报, 2020, 39(2), 552.
28 Bartoli L, Becherini F, Grazzi F, et al. Nuclear Instruments and Methods in Physics Research A, 2009, 608, 360.
29 Duan Y H, Zhu P X, Sun Y. Sciencepaper Online, 2007, 2(5), 359(in Chinese).
段永华, 竺培显, 孙勇. 中国科技论文在线, 2007, 2(5), 359.
30 Wang W, Xiong L, Zhu H Y, et al. Journal of Iron and Steel Research, 2015, 27(12), 36(in Chinese).
王炜, 熊力, 朱航宇, 等. 钢铁研究学报, 2015, 27(12), 36.
31 Murari F D, Silva A V, Avillez R R, et al. Journal of Materials Research and Technology, 2015, 4(2), 191.
32 Shao Z Z, Wang C L, Song Y T. Nuclear Fusion and Plasma Physics, 2011(4), 350(in Chinese).
邵珠振, 王传礼, 宋云涛. 核聚变与等离子体物理, 2011(4), 350.
33 Institute E P R. Handbook on neutron absorber materials for spent nuclear fuel applications. EPRI, USA, 2009.
34 Nai Q L, Zheng W J, Song Z G, et al. Journal of Iron and Steel Research, 2013, 25(6), 53(in Chinese).
佴启亮, 郑文杰, 宋志刚, 等. 钢铁研究学报, 2013, 25(6), 53.
35 Levet A, Kavaz E, Zdemir Y. Journal of Alloys and Compounds, 2020, 819, 152946.
36 Wang Y R, Zhao Y, Jiang M Z, et al. Journal of Netshape Forming Engineering, 2019, 11(3), 166.
37 Greuner H, Balden M, Boeswirth B, et al. Journal of Nuclear Materials, 2004, 329, 849.
38 Yuan Q S. The effect of Zr、Cr、Ni on the microstructure of high boron steel. Master’s Thesis, Xihua University, China, 2009(in Chinese).
袁亲松. Zr、Cr、Ni对高硼钢组织的影响. 硕士学位论文, 西华大学, 2009.
39 Akkurt I, Calik A, Akyldrm H. Nuclear Engineering and Design, 2011, 241(1), 55.
40 Jiang J, Zhao P. Foundry, 2009, 58(1), 75(in Chinese).
蒋军, 赵平. 铸造, 2009, 58(1), 75.
41 Liu J Q, Gong J X, Zhang L C. Heat Treating of Metals, 2017, 42(6), 142(in Chinese).
刘江晴, 龚建勋, 张立成. 金属热处理, 2017, 42(6), 142.
42 Yang W F, Liu Y. Materials Reports, 2009, 23(5), 52(in Chinese).
杨文锋, 刘颖. 材料导报, 2009, 23(5), 52.
43 Liu T, Yu Z H, Zhao J H, et al. Light Alloys Fabrication Technology. 2014, 42(1), 25(in Chinese).
刘涛, 于智宏, 赵建华, 等. 轻合金加工技术, 2014, 42(1), 25.
44 Li G, Jian M, Wang M L, et al. Materials Reports, 2011, 25(7), 110.
李刚, 简敏, 王美玲, 等. 材料导报, 2011, 25(7), 110.
45 Kenneth D K. Nuclear engineering handbook, CRC Press, USA, 2009.
46 Yang J, Ma S W, Liu K, et al. Chinese Journal of Rare Metals, 2018, 12, 1267(in Chinese).
杨剑, 马书旺, 刘坤, 等. 稀有金属, 2018, 42(12), 1267.
47 Arslan G, Kara F, Turan S. Journal of the European Ceramic Society, 2003, 23(8), 1243.
48 Wang Y R, Zhao Y, Jiang M Z, et al. Journal of Netshape Forming Engineering, 2019, 11(3), 166(in Chinese).
王玉荣, 赵勇, 蒋命中, 等. 精密成形工程, 2019, 11(3), 166.
49 Amirhossein Rahimi, Hamidreza Baharvandi. International Journal of Refractory Metals and Hard Materials, 2017, 66, 220.
50 Zhou Y C. Study on design and properties of Tungsten-Boron compound/Aluminum shielding composites. Master’s Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
周玉超. 钨硼化物/铝复合屏蔽材料设计及性能研究. 硕士学位论文, 哈尔滨工业大学, 2019.
51 Zhang P, Li J, Wang W X, et al. Atomic Energy Science and Technology, 2019, 53(3), 434(in Chinese).
张鹏, 李靖, 王文先, 等. 原子能科学技术, 2019, 53(3), 434.
52 Sayyed M I, Mohammed F Q, et al. Applied Science, 2020, 10, 7680.
53 Zhang Y. Design and preparation of Nickel-based foam metal neutron shielding composite materials. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, China, 2017(in Chinese).
张云. 镍基泡沫金属中子屏蔽复合材料的设计与制备. 硕士学位论文, 南京航空航天大学, 2017.
54 Jones R B, Younes C M, Heard P J, et al. Acta Materialia, 2002, 50(17), 4395.
55 Natarajan S, Gopalan V, Rajan R A, et al. Materials, 2021, 14(7), 1660.
56 Zeng X Y. Science Technology and Engineering, 2020, 20(35), 14352(in Chinese).
曾小义. 科学技术与工程, 2020, 20(35), 14352.
57 Xiang Y, Chen Z G, Wei X, et al. Rare Metal Materials and Engineering, 2015, 44(6), 1335.
58 Robino C V, Michael J R, Dupont J N. Journal of Materials Engineering and Performance, 2003, 12(2), 206.
59 Xu Z G, Jiang L T, Zhang Q, et al. Journal of Alloys and Compounds, 2017, 729, 1234.
60 Wang W X, Zhang J, Wan S P, et al. Fusion Engineering and Design, 2021, 171, 112566.
61 Michael J M. The investigation of the toughness of a Ni base alloy with Gd enrichment for spent nuclear waste containmensystems. Master’s Thesis, Lehigh University, USA, 2005.
62 Ronald E M, Lister T E, Pinhero P J, et al. In: NACE Annual Confe-rence & Exposition. California, 2003, pp. 18.
63 Mizia R E, Lister T E, Pinhero P J, et al. Nuclear Technology, 2006, 155, 133.
64 Lister T E, et al. Corrosion, 2005, 61, 706.
65 Wu Z Y. Microstructure and properties of new Gd riched Ni-based alloys. Ph. D. Thesis, Shanghai University, China, 2019(in Chinese).
武昭妤. 新型富Gd镍基合金的微观组织及性能研究. 博士学位论文, 上海大学, 2019.
66 Jae Y K, Jae H J, Sung-Dae K, et al. Journal of Nuclear Materials, 2020, 542, 152462.
67 Wang L W, Tang D W, Zou S L. Metal Materials and Metallurgy Engineering, 2019, 47(3), 8(in Chinese).
王利伟, 唐德文, 邹树梁. 金属材料与冶金工程, 2019, 47(3), 8.
68 Zhang Y Y. Study on preparation, microstructure and properties of(W+B)/Al composites. Master’s Thesis, Taiyuan University of Technology, China, 2019(in Chinese).
张宇阳.(W+B)/Al复合材料的制备与组织性能研究. 硕士学位论文, 太原理工大学, 2019.
69 El-Agawany F I, Ekinci N, Mahmoud K A, et al. The European Physical Journal Plus, 2021, 136, 527.
70 Ekinci N, El-Agawany F I, Mahmoud K A, et al. Radiation Physics and Chemistry, 2021, 186, 109483.
71 Bünyamin Aygün. Radiation Physics and Chemistry, 2021, 183, 109630.
[1] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[2] 杨新异, 黄群英. 球磨转速对含钆ODS钢中M23C6析出的影响研究[J]. 材料导报, 2023, 37(17): 22030003-6.
[3] 陈秋雨, 张城皓, 曹可, 陆永俊, 王连才, 张秀芹, 马慧玲, 翟茂林. 高分子基辐射防护材料研究进展[J]. 材料导报, 2022, 36(Z1): 21080080-4.
[4] 赵会阳, 王豪, 赵亮亮, 张炜楠, 王岩, 吴跃民, 于辉, 孙承月, 琚丹丹, 吴宜勇. 空间太阳电池柔性封装材料与技术研究进展[J]. 材料导报, 2022, 36(22): 22030104-11.
[5] 何颖, 刘峰, 蒋丹枫, 周江, 刘夏杰, 李珂娴, 沈先荣. 基于钨/钆三层结构的中子/γ一体化辐射防护服材料的设计[J]. 材料导报, 2022, 36(13): 21010270-4.
[6] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[7] 徐天寒, 张叶, 戴耀东. 热中子防护Gd/Al复合材料的设计[J]. 材料导报, 2021, 35(22): 22121-22124.
[8] 史平安, 邱勇, 万强, 胡文军, 晏顺坪. 60Co γ射线辐照对硅泡沫材料压缩性能的影响[J]. 材料导报, 2021, 35(2): 2151-2156.
[9] 沈华亚, 陈法国, 韩毅, 杨明明, 李国栋, 梁润成. 金属氢化物中子屏蔽应用研究现状[J]. 材料导报, 2019, 33(Z2): 484-487.
[10] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[11] 付晓刚, 张金权, 秦博, 马浩然, 龙斌. 氢化锆与高温钠的相容性研究[J]. 材料导报, 2019, 33(11): 1801-1804.
[12] 何林, 蔡永军, 李强. 中子和伽马射线综合屏蔽材料研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1107-1113.
[13] 冯婷婷, 刘梁森, 马天帅, 徐志伟, 李静, 傅宏俊, 匡丽赟, 李英琳. 伽马射线辐照改性聚丙烯腈原丝及聚丙烯腈基碳纤维的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1114-1121.
[14] 蒋丹枫, 王国辉, 李婷婷, 何帆, 戴耀东. NBR/PVC橡塑合金辐射防护材料的制备及性能研究[J]. 《材料导报》期刊社, 2017, 31(6): 56-60.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed