Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21120112-9    https://doi.org/10.11896/cldb.21120112
  无机非金属及其复合材料 |
NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究
杨芷奇1, 孙立1,2,*, 宋伟明1, 赵冰1,2, 叶军1, 陈朝晖1, 赵桦萍1, 王福洋1
1 齐齐哈尔大学化学与化学工程学院,黑龙江 齐齐哈尔 161006
2 黑龙江省表面活性剂与工业助剂重点实验室,黑龙江 齐齐哈尔 161006
Effective Construction of the NiFe-P/Graphene Bifunctional Electrocatalyst for Overall Water Splitting
YANG Zhiqi1, SUN Li1,2,*, SONG Weiming1, ZHAO Bing1,2, YE Jun1, CHEN Zhaohui1, ZHAO Huaping1, WANG Fuyang1
1 School of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, Heilongjiang, China
2 Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar 161006, Heilongjiang, China
下载:  全 文 ( PDF ) ( 15890KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为构建低成本、高效的析氢(HER)和析氧(OER)双功能电催化剂,基于基团配位原理,以氧化石墨烯为载体,硝酸镍、铁氰化钾、柠檬酸三钠为原料,通过水热-磷化热解法制备磷化镍铁/石墨烯复合电催化剂(NiFe-P/RGO)。采用SEM、TEM、XRD、XPS和BET多种物理手段对NiFe-P/RGO电催化剂的化学结构和物理形貌进行了表征,并对NiFe-P/RGO电催化剂的碱性全解水性能进行了测试。研究结果表明,高活性NiFe-P与高导电性石墨烯有效复合,极大地增加了传质传荷能力,从本质上提高了催化剂的电催化性能。在HER和OER反应中,NiFe-P/RGO在10 mA/cm2电流密度下的产氢和产氧过电位分别为125 mV和218 mV。将NiFe-P/RGO分别作为阴极和阳极组装成全解水装置,在10 mA/cm2下,其施加电压为1.52 V,并且具有优异的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨芷奇
孙立
宋伟明
赵冰
叶军
陈朝晖
赵桦萍
王福洋
关键词:  NiFe-P  石墨烯  双功能催化剂  全解水    
Abstract: To gain bifunctional electrocatalyst with low cost and high catalytic activity for HER and OER, we used the principle of group coordination, and then the NiFe-P/RGO bifunctional catalyst was successfully prepared by a hydrothermal-phosphatizing pyrolysis method, in which graphite oxide was selected as the host carrier, nickel nitrate, potassium ferricyanide and trisodium citrate were acted as the raw materials. The chemical structure and morphological characterization of as-prepared catalysts were carried out by SEM, TEM, XRD, XPS and BET, respectively. Moreover, the alkaline hydrolysis performance of NiFe-P/RGO electrocatalyst was tested. The results exhibited that the effective recombination between highly active NiFe-P and good conductive RGO can vastly accelerate ion/electron charge transport to increase electrocatalytic performance. For HER and OER, NiFe-P/RGO manifests excellent bifunctional activity with low overpotentials was 125 mV and 218 mV at a current density of 10 mA/cm2, respectively. The electrolyzer equipped with the NiFe-P/RGO as both cathode and anode requires only 1.52 V at a current density of 10 mA/cm2 with superior catalytic durability.
Key words:  NiFe-P    graphene    bifunctional electrocatalyst    overall water splitting
发布日期:  2023-07-10
ZTFLH:  X511  
基金资助: 国家自然科学基金(21978140;21501104);黑龙江省博士后资助经费(LBH-Z18231);黑龙江省省属高校基本科研业务费(YSTSXK135409211;YSTSXK201845);黑龙江省表面活性剂与工业助剂重点实验室开放课题基金资助项目(BMHXJKF 007);齐齐哈尔大学研究生创新科研项目(YJSCX2020004)
通讯作者:  *孙立,齐齐哈尔大学化学与化学工程学院副教授,硕士研究生导师。2007年7月毕业于哈尔滨学院,获学士学位。2010年7月毕业于黑龙江大学,获硕士学位。2014年7月毕业于黑龙江大学,获博士学位。主要研究领域为过渡金属基纳米材料的制备及能量转换特性研究。目前,已经发表SCI论文10余篇,并且超过1 000次引用。sunli8481@163.com   
作者简介:  杨芷奇,2019年7月毕业于哈尔滨学院,获得理学学士学位,现为齐齐哈尔大学化学与化学工程学院应用化学专业硕士研究生,主要研究领域为纳米材料的制备与设计。
引用本文:    
杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
YANG Zhiqi, SUN Li, SONG Weiming, ZHAO Bing, YE Jun, CHEN Zhaohui, ZHAO Huaping, WANG Fuyang. Effective Construction of the NiFe-P/Graphene Bifunctional Electrocatalyst for Overall Water Splitting. Materials Reports, 2023, 37(13): 21120112-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120112  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21120112
1 Qiu Z, Tai C W, Niiklasson G A, et al. Energy & Environmental Science, 2019, 12, 572.
2 Chen P Z, Tong Y, Wu C Z, et al. Accounts of Chemical Research, 2018, 51(11), 2857.
3 Xiong B Y, Chen L S, Shi J L. ACS Catalysis, 2018, 8(4), 3688.
4 He L H, Liu J M, Liu Y K, et al. Applied Catalysis B:Environmental, 2019, 248(5), 366.
5 Ling T, Zhang T, Ge B H, et al. Advanced Materials, 2019, 31(16), 1807771.
6 Dong P P, Feng Y Q, Wang X, et al. Fine Chemicals, 2021, 38(4), 824(in Chinese).
董沛沛, 冯永强, 王潇, 等. 精细化工, 2021, 38(4), 824.
7 Jung E, Park H Y, Cho A, et al. Applied Catalysis B:Environmental, 2018, 225(5), 238.
8 Huang S C, Meng Y Y, Cao Y F, et al. Applied Catalysis B:Environmental, 2019, 248(5), 239.
9 Pu Z H, Amiinu I S, Kou Z K, et al. Angewandte Chemie International Edition, 2017, 56(38), 11559.
10 Zhang Z H, Jiang Y, Zheng X J, et al. New Journal of Chemistry, 2018, 42(14), 11285.
11 Chu S J, Chen W, Chen G L, et al. Applied Catalysis B:Environmental, 2019, 243, 537.
12 Sun M, Liu H J, Qu J H, et al. Advanced Energy Materials, 2016, 6(13), 1600087.
13 Zhang G, Wang G C, Liu Y, et al. Journal of the American Chemical Society, 2016, 138(44), 14686.
14 Pan Y, Sun K, Liu S J, et al. Journal of the American Chemical Society, 2018, 140(7), 2610.
15 He P L, Yu X Y, Lou X W D, et al. Angewandte Chemie International Edition, 2017, 56(14), 3897.
16 Wang R, Dong X Y, Du J, et al. Advanced Materials, 2018, 30(6), 1703711.
17 Popczun E J, McKone J R, Read C G, et al. Journal of the American Chemical Society, 2013, 135(25), 9267.
18 Chung D Y, Jun S W, Yoon G, et al. Journal of the American Chemical Society, 2017, 139(19), 6669.
19 Wang D R, Liu J J, Luo L, et al. Electrochimica Acta, 2019, 317(10), 242.
20 Li Z P, Shang J P, Su C N, et al. Journal of Fuel Chemistry and Technology, 2018, 46(4), 473.
21 Boakye F O, Fan M L, Zhang F F, et al. Journal of Solid State Electrochemistry, 2022, 1, 11.
22 Tang K, Wang X F, Wang M F, et al. ChemElectroChem, 2017, 4(9), 2150.
23 Xu Y, Kraft M, Xu R. Chemical Society Reviews, 2016, 45(11), 3039.
24 Ding X, Uddin W, Sheng H T, et al. Journal of Alloys and Compounds, 2020, 814(25), 152.
25 Wu Y Y, Li Y, Yuan M K, et al. Journal of Alloys and Compounds, 2020, 847(20), 156363.
26 Xi W, Yan G, Lang Z, et al. Small, 2018, 14(42), 1802204.
27 Du Y X, Chen J, Li L, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(15), 13523.
28 Chu S J, Chen W, Chen G L, et al. Applied Catalysis B:Environmental, 2019, 243, 537.
29 Xuan C J, Wang J, Xia W W, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 26134.
30 Wang P Y, Pu Z H, Li Y H, et al. ACS Applied Materials & Interfaces, 2017, 9(31), 26001.
31 Tian J Q, Chen J, Liu J Y, et al. Nano Energy, 2018, 48, 284.
[1] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[2] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[3] 吴海华, 杨增辉, 刘力, 张忍静, 邓开鑫, 李言. 三层石墨烯吸波体熔融沉积成形及层间材料分布对吸波性能的影响[J]. 材料导报, 2023, 37(2): 21080161-7.
[4] 范存霞, 谷雨, 邱星晨, 李长明, 郭春显. 基于石墨烯/氯化血红素复合物纳米酶可视化检测谷胱甘肽[J]. 材料导报, 2023, 37(2): 22030004-8.
[5] 卫琳, 刘贵立, 杨疆飞, 李欣玥, 张国英. 零模超晶格类型对石墨烯纳米带金属性影响的密度泛函理论研究[J]. 材料导报, 2023, 37(13): 22010031-7.
[6] 吴晨曦, 郑文跃, 王现中, 熊道英, 金少波. 石墨烯增强防腐涂层的研究进展[J]. 材料导报, 2023, 37(13): 21080272-9.
[7] 黄志雄, 胡新军, 田建平, 陈满骄, 马小燕, 江雪莲, 唐诗应. 芳基磷酸酯盐改性石墨烯/水性环氧涂层的耐腐蚀性能研究[J]. 材料导报, 2023, 37(13): 21110138-7.
[8] 樊晋源, 李茂森, 段平, 陈伟, 张祖华. 氧化石墨烯增强地聚物抗硫酸盐侵蚀性能研究[J]. 材料导报, 2023, 37(13): 22030196-5.
[9] 张英, 曹亦俊, 彭伟军, 苗毅恒, 刘曙光. 基于3D打印的三维石墨烯基电极研究进展[J]. 材料导报, 2023, 37(11): 21070040-13.
[10] 李威霖, 陈玲, 王佳, 袁凯, 焦剑. Fe3O4-GO复合纳米纸的制备及吸波性能研究[J]. 材料导报, 2023, 37(1): 21080126-7.
[11] 马驰, 曹流, 张东. 定向导热的石墨烯气凝胶相变复合材料的研究[J]. 材料导报, 2023, 37(1): 21080077-6.
[12] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[13] 梁泽芬, 林小军, 纳仁花, 牛玉艳, 王亮. 单层石墨烯电子结构的调控策略和对接的研究进展[J]. 材料导报, 2022, 36(Z1): 22020133-6.
[14] 刘伟, 贾琨, 谷建宇, 马晨, 魏学红. Ag/石墨烯复合薄膜的制备及其导热和电磁屏蔽性能研究[J]. 材料导报, 2022, 36(9): 21020136-5.
[15] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed