Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21110049-7    https://doi.org/10.11896/cldb.21110049
  无机非金属及其复合材料 |
加压碳酸化法制备片状纳米碳酸钙及其表征
汤勇1, 唐名德2, 焦妍惠1, 郭亚宁1, 韦德恩2, 童张法1, 李立硕1,*
1 广西大学化学化工学院,南宁 530004
2 崇左南方水泥有限公司广西钙基材料协同创新中心,广西 崇左 532200
Preparation and Characterization of Flake-like Nano Calcium Carbonate by Pressurized Carbonation
TANG Yong1, TANG Mingde2, JIAO Yanhui1, GUO Yaning1, WEI Deen2, TONG Zhangfa1, LI Lishuo1,*
1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
2 Guangxi Calcium-based Materials Collaborative Innovation Center, Chongzuo South Cement Co., Ltd., Chongzuo 532200, Guangxi, China
下载:  全 文 ( PDF ) ( 13502KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以氢氧化钙和二氧化碳为反应原料,二水合柠檬酸三钠(Na3C6H5O7·2H2O)为晶型控制剂,乙醇为助表面活性剂,采用加压碳酸化法成功制备了片状碳酸钙。通过场发射扫描电镜(FESEM)、X射线衍射(XRD)、红外光谱(FTIR)、原子力显微镜(AFM)等手段对样品的形貌和结构进行了表征,并考察了柠檬酸钠添加量、反应温度、乙醇添加量、CO2压力等对产品的影响。结果表明,在反应温度为100 ℃、柠檬酸钠添加量为8%、乙醇添加量为10 mL和CO2压力为1.5 MPa的条件下,成功制备了厚度为7~8 nm、宽约为3.5 μm、长约为25 μm、长宽比约为7∶1的片状纳米碳酸钙,产品大小均一,形貌较为规整。片状碳酸钙的晶型为方解石型,比表面积约为27.11 m2·g-1。加压碳酸化增加了CO2在溶液中的溶解度,在柠檬酸三钠的作用下定向生成片状纳米碳酸钙。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤勇
唐名德
焦妍惠
郭亚宁
韦德恩
童张法
李立硕
关键词:  加压碳酸化  片状碳酸钙  二水合柠檬酸三钠  鼓泡    
Abstract: With calcium hydroxide and carbon dioxide as raw materials, trisodium citrate dihydrate as crystal control agents and ethanol as co-surfactant, flake-like calcium carbonate were successful prepared by pressurized carbonation. The morphology and structure of the samples were characterized by FESEM, XRD, FTIR, AFM, etc. And the influences of calcium carbonate morphology are investigated by changing the amount of adding trisodium citrate dehydrate and ethanol, the reaction temperature, the pressure of the CO2, etc. The results showed that under the conditions of reaction temperature of 100 ℃, sodium citrate content of 8%, ethanol content of 10 mL and CO2 pressure of 1.5 MPa, flake-like nano calcium carbonate with thickness of about 7—8 nm, width of about 3.5 μm, length of about 25 μm and length to width ratio of about 7∶1 was successfully prepared, and the products were of uniform sizes and relatively regular morphologies. The crystalline form of flake-like calcium carbonate was calcite, and the specific surface area was about 27.11 m2·g-1. Pressurized carbonation increased the solubility of CO2 in solution, and under the action of trisodium citrate, flake-like nano calcium carbonate was directionally formed.
Key words:  words pressurize carbonation    flake-like calcium carbonate    trisodium citrate dihydrate    bubbling
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TQ13  
基金资助: 广西钙基材料协同创新中心项目(CZNF-JSZX20-03);广西碳酸钙产业化工程院公司级科研项目(TSGGCY-201907001)
通讯作者:  *李立硕,广西大学化学化工学院副教授、研究生导师。2005年广西大学化学化工学院硕士毕业后留校工作至今,2013年获广西大学化学工艺专业博士学位。目前主要从事纳米材料、高反应性生物半焦制备、碳酸钙反应-结晶过程等方面的研究工作。已在国内外学术期刊发表论文20余篇,获授权专利10项。li_lishuo@163.com   
作者简介:  汤勇,2019年6月毕业于河南城建学院,获得工学学士学位。现为广西大学化学化工学院化学工程专业硕士研究生,目前主要从事无机材料的制备和应用方向的研究。
引用本文:    
汤勇, 唐名德, 焦妍惠, 郭亚宁, 韦德恩, 童张法, 李立硕. 加压碳酸化法制备片状纳米碳酸钙及其表征[J]. 材料导报, 2023, 37(17): 21110049-7.
TANG Yong, TANG Mingde, JIAO Yanhui, GUO Yaning, WEI Deen, TONG Zhangfa, LI Lishuo. Preparation and Characterization of Flake-like Nano Calcium Carbonate by Pressurized Carbonation. Materials Reports, 2023, 37(17): 21110049-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110049  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21110049
1 Santos S S M, Marcondes M L, Justo J F, et al. Physics of the Earth and Planetary Interiors, 2020, 299, 106327.
2 Kezuka Y, Kuma Y, Nakai S, et al. Powder Technology, 2018, 335, 195.
3 Bai L M, Han Y X, Li L X, et al. In:China International Powder Technology and Application Forum. Beijing, 2009, pp. 79.
4 Aghajanian S, Koiranen T. Journal of CO2 Utilization, 2020, 38, 366.
5 Kezuka Y, Kawai K, Eguchi K, et al. Minerals, 2017, 7(8), 133.
6 Zhang Y L, Hu J, Li J, et al. Materials Reports, 2016, 30(S1), 391 (in Chinese).
张艳林, 胡劲, 李军, 等. 材料导报, 2016, 30(S1), 391.
7 Zheng T, Zhang X, Yi H. Journal of Crystal Growth, 2019, 528, 125275.
8 Lai Y H, Chen L S, Bao W C, et al. Crystal Growth & Design, 2015, 15(3), 1194.
9 Polat S, Sayan P. Chemical Engineering Communications, 2020, 207(11), 1579.
10 Zahir M H, Irshad K, Rahman M M, et al. ACS Omega, 2021, 6(35), 22909.
11 Wu C H, Li X B, Xu X Q, et al. Inorganic Chemicals Industry, 2009, 41(7), 45 (in Chinese).
吴从华, 李雪冰, 徐西庆, 等. 无机盐工业, 2009, 41(7), 45.
12 Zhao L N, Kong Z G, Wang X Y, et al. Chemical Industry and Engineering Progress, 2010, 29(12), 2346 (in Chinese).
赵丽娜, 孔治国, 王秀艳, 等. 化工进展, 2010, 29(12), 2346.
13 Wang S, Mao E L. China Pulp & Paper Industry, 2009, 30(20), 59 (in Chinese).
王森, 毛二林. 中华纸业, 2009, 30(20), 59.
14 Gorna K, Hund M, Vuak M, et al. Materials Science and Engineering:A, 2008, 477(1-2), 217.
15 Liu L, Jiang J, Yu S H. Crystal Growth & Design, 2014, 14(11), 6048.
16 Yao C L, Xie A J, Shen Y H, et al. Materials Science and Engineering C, 2015, 51, 274.
17 Harris J, Mey I, Hajir M, et al. CrystEngComm, 2015, 17(36), 6831.
18 Hu H, Zhang Y, Zhang X, et al. CrystEngComm, 2020, 22(14), 2454.
19 Mlinari N M, Kontrec J, Dzakula B N, et al. Crystals, 2021, 11(3), 250.
20 Zhou L H, Wang G H, Du J, et al. CrystEngComm, 2021, 23(41), 7206.
21 Sarkar A, Dutta K, Mahapatra S. Crystal Growth & Design, 2013, 13(1), 204.
22 Zhao L N, Liu D X, Wang Y, et al. Chemical Engineer, 2012, 26(10), 11 (in Chinese).
赵丽娜, 刘冬雪, 王悦, 等. 化学工程师, 2012, 26(10), 11.
23 Li L, Yang Y, Lv Y R, et al. Colloids and Surfaces B:Biointerfaces, 2020, 186, 110720.
24 Abeywardena M R, Elkaduwe R, Karunarathne D, et al. Advanced Powder Technology, 2020, 31(1), 269.
25 Boyjoo Y, Pareek V K, Liu J. Journal of Materials Chemistry A, 2014, 2(35), 14270.
26 Beuvier T, Calvignac B, Delcroix G J R, et al. Journal of Materials Chemistry, 2011, 21(26), 9757.
27 Jin T T, Tian X L, Hong H L, et al. Powder Technology, 2020, 370, 29.
28 Zhang Q, Chen M, Sun X Y, et al. Journal of Synthetic Crystals, 2012, 41(2), 539 (in Chinese).
张群, 陈敏, 孙新园, 等. 人工晶体学报, 2012, 41(2), 539.
29 Gao Y F, Wang H S. Chinese Journal of Applied Chemistry, 2015, 32(7), 831 (in Chinese).
高艳芳, 王海水. 应用化学, 2015, 32(7), 831.
30 Guo X H, Liu L, Wang W, et al. CrystEngComm, 2011, 13(6), 2054.
31 Shi L B, Tang M D, Muhammad Y, et al. CrystEngComm, 2021, 23(16), 3033.
32 Huang F Z, Shen Y H, Xie A J, et al. Crystal Research and Technology:Journal of Experimental and Industrial Crystallography, 2009, 44(8), 818.
33 Shen C, Li R, Pei J, et al. Applied Sciences, 2020, 10(1), 91.
34 Yue L H, Shui M, Xu Z D. Spectroscopy Letters, 2001, 34(6), 793.
35 Kruk M, Jaroniec M. Chemistry of Materials, 2001, 13(10), 3169.
36 He X, Yin D W, Tong Z F, et al. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6), 1359 (in Chinese).
贺鑫, 尹大伟, 童张法, 等. 高校化学工程学报, 2016, 30(6), 1359.
37 Popescu M A, Isopescu R, Matei C, et al. Advanced Powder Technology, 2014, 25(2), 500.
[1] 唐洋洋, 李林波, 王超, 杨柳, 杨潘. 稀土配合物-无机杂化发光材料研究进展[J]. 材料导报, 2022, 36(19): 21050037-9.
[2] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[3] 王小玉. 四氧化三钴纳米材料制备路线的研究进展[J]. 材料导报, 2021, 35(z2): 64-67.
[4] 董一苇, 徐祖顺, 杨婷婷, 高庆. 化学石膏制备α-半水石膏的研究进展[J]. 材料导报, 2021, 35(z2): 241-247.
[5] 侯鹏程, 王永亮, 韩志东, 王春锋. 聚碳硅烷协效氢氧化镁阻燃聚乙烯复合材料的残炭结构演变[J]. 材料导报, 2021, 35(z2): 525-528.
[6] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[7] 余先纯, 孙德林, 计晓琴, 王张恒. 木质素基碳纳米片组装木陶瓷电极的结构调控与电化学储能[J]. 材料导报, 2021, 35(2): 2012-2018.
[8] 钟远, 王敏, 袁俊生. 热分析法研究六水硝酸镁的脱水过程与机理[J]. 材料导报, 2020, 34(22): 22015-22019.
[9] 张鹏斐, 乔志军, 张志佳, 于镇洋, 赵潭, 苟金龙. 加入增韧材料提高TiO2复合纳米电极的力学和电化学性能[J]. 材料导报, 2020, 34(Z2): 24-29.
[10] 崔帅, 呼世磊, 吕东风, 崔燚, 魏颖娜, 魏恒勇, 卜景龙, 陈越军. 介孔氮化铌粉体的制备及电化学性能[J]. 材料导报, 2020, 34(14): 14009-14015.
[11] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[12] 龚跃球, 石晓宇, 李京兵, 谢淑红. 热力学计算指导下改进CVD法制备大面积薄层MoS2[J]. 材料导报, 2019, 33(22): 3708-3711.
[13] 刘光蓉, 李露, 张祖超, 冯支斌. 人造金红石母液制备α-Fe2O3纳米颗粒的研究[J]. 材料导报, 2019, 33(Z2): 150-153.
[14] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[15] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed