Please wait a minute...
材料导报  2021, Vol. 35 Issue (11): 11145-11153    https://doi.org/10.11896/cldb.19110218
  金属与金属基复合材料 |
ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展
滕凌虹1, 曹伟伟1,*, 朱波2, 秦溶蔓2
1 天津工业大学材料科学与工程学院,天津 300387;
2 山东大学材料科学与工程学院,济南 250061
Application and Development of ABAQUS in Simulating High and Low Velocity Impact Metallic and Composite Targets of Projectiles
TENG Linghong1, CAO Weiwei1,*, ZHU Bo2, QIN Rongman2
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China;
2 School of Material Science and Engineering, Shangdong University, Jinan 250061, China
下载:  全 文 ( PDF ) ( 6785KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 ABAQUS作为现阶段应用最广泛的非线性有限元模拟软件,可以分析复杂的固体力学和结构力学问题,在模拟材料冲击方面的性能优越。弹丸对靶板的冲击损伤过程复杂,理论和实验研究比较困难。现阶段为检测材料的抗冲击性能通常需要进行大量的冲击实验,有限元软件的出现为此类问题的解决提供了较为简单准确的途径。
数值模拟方法本质上是物理现象的近似计算和表征,其结果的准确度很大程度上依赖于对相关材料性能的认识和数学表征。对问题的准确分析需要定义材料变形极限的破坏准则。在ABAQUS中金属材料使用较多的是J-C失效模型,而Hashin和Chang-Chang失效准则在复合材料领域使用较多,Puck准则对基体失效预测较为准确。现阶段ABAQUS在抗冲击领域的应用主要包括:研究材料的损伤机理和失效过程,预测材料的弹道极限。ABAQUS不仅可对金属材料和2D复合材料进行模拟,还可对3D编制复合材料、泡沫夹层复合材料等进行模拟,将隐式分析和显式分析结合可对材料施加预载荷以模拟更多情况下材料的损伤过程。
本文简要介绍了ABAQUS各个模块在模拟弹丸侵彻过程中的作用,阐述了不同损伤准则在模拟金属和复合材料领域的应用。通过实例重点介绍了ABAQUS在模拟弹丸高低速冲击时的应用,最后就现有研究中存在的问题及研究方向提出了建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
滕凌虹
曹伟伟
朱波
秦溶蔓
关键词:  ABAQUS  冲击模拟  金属  复合材料    
Abstract: As the most widely used nonlinear finite element simulation software, ABAQUS can be used to analyze complex solid and structural mechanics problems, has a superior performance in simulating ballistic impacts. The damage process of target is complicated, theoretical and experimental research is difficult. In order to detect the ballistic performance of targets, many experiments are usually required. Finite element software provides a simpler and more accurate way to solve such problems.
The essence of numerical simulation methods is the approximate calculation and characterization of physical phenomena. The accuracy of the results depends on the understanding and mathematical characterization of material properties. Accurate analysis of the problem requires a definition of the failure criteria for the material’s deformation limit. The role of each module of ABAQUS in the process of simulating projectile penetration is briefly introduced. J-C model is most commonly used in metallic materials. Hashin and Chang-Chang criteria are used more in composite materials. Puck’s criteria are more accurate for matrix failure prediction. Nowadays, the application of ABAQUS to bullet impact mainly includes: researching the damage mechanism and the failure process of materials, and predicting the ballistic limit. ABAQUS can not only simulate metallic and 2D composite materials, but also can simulate 3D composites and foam-coded sandwich composites. The combination of ABAQUS/Standard and ABAQUS/Explicit can be used to preload the material to simulate the damage process of the material.
This review introduces the role of each module of ABAQUS in the simulated impact process, and illustrates the application of different damage criteria for metallic and composite materials. The application of ABAQUS in simulating high and low velocity impact is highlighted by examples. Finally, based on the summary of the existing researches, some suggestions are presented for the future research and development.
Key words:  ABAQUS    impact simulation    metal    composite material
               出版日期:  2021-06-10      发布日期:  2021-06-25
ZTFLH:  TJ02  
通讯作者:  *18622234938@qq.com   
作者简介:  滕凌虹,2018年6月毕业于天津科技大学,获得工学学士学位。现为天津工业大学材料科学与工程学院硕士研究生,在曹伟伟副教授的指导下进行研究。目前主要研究领域为防弹复合材料与冲击模拟。曹伟伟,天津工业大学材料科学与工程学院副教授、硕士研究生导师。2001年6月本科毕业于山东大学材料学院,2004年6月获得山东大学材料学硕士学位,2009年6月在山东大学材料学专业学习,获得博士学位。2009年6月至今在天津工业大学材料学院工作。至今已主持课题项目10项,包括博士后课题一项,企业横向课题5项,作为主要研究人员参与国家“863”课题三项,曾获得山东省科技进步二等奖、中国纺织工业协会教学成果二等奖、呼和浩特市人民政府颁发的科技成果一等奖。现主要从事防弹材料的研发和改进。
引用本文:    
滕凌虹, 曹伟伟, 朱波, 秦溶蔓. ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展[J]. 材料导报, 2021, 35(11): 11145-11153.
TENG Linghong, CAO Weiwei, ZHU Bo, QIN Rongman. Application and Development of ABAQUS in Simulating High and Low Velocity Impact Metallic and Composite Targets of Projectiles. Materials Reports, 2021, 35(11): 11145-11153.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110218  或          http://www.mater-rep.com/CN/Y2021/V35/I11/11145
1 Qin X Y. The investigation of impact resistance of Aluminum?polymer bilayers plates. Master's Thesis, Beijing Institute of Technology, China,2016(in Chinese).
秦翔宇.铝合金—高聚物层状复合靶板抗冲击性能研究.硕士学位论文,北京理工大学,2016.
2 Sharma A, Mishra R, Jain S, et al. Thin?Walled Structures,2018,126,193.
3 Ebinaa M, Yoshimurab A, Sakauea K, et al. Composite Part A,2016,113,166.
4 Mohagheghian I, Wang Y, Zhou J, et al. International Journal of Solids and Structures,2017,109,46.
5 Rodríguez?Millán M, Ito T, Loya J A, et al. Materials & Design,2016,110,391.
6 Iqbal M A, Senthil K, Sharma P, et al. International Journal of Impact Engineering,2016,96,146.
7 Zhou X, Li K, Chen C H, et al. Journal of Vibration and Shock,2018,37(22),6(in Chinese).
周霞,李凯,陈成杭,等.振动与冲击,2018,37(22),6.
8 Mu?oz R, Martínez?Hergueta F, Gálvez F, et al. Composite Structures,2015,127,141.
9 Rodriguez?Millan M, Garcia?Gonzalez D, Rusinek A, et al. Thin?Walled Structures,2018,123,1.
10 Zhang C, Curiel?Sosa J L, Duodu E A. Journal of Materials Science,2017,52(8),4658.
11 Wang G D, Melly S K. International Journal of Advanced Manufacturing Technology,2017,94(1),1.
12 Zhao G W. Times Agricultural Machinery,2019,46(5),67(in Chinese).
赵国伟.时代农机,2019,46(5),67.
13 Li Y. Ship Science and Technology,2019,41(14),4(in Chinese).
李彦.舰船科学技术,2019,41(14),4.
14 Dandekar C R, Shin Y C. International Journal of Machine Tools and Manufacture,2012,57,102.
15 Shi Y L, He J X, Wang W D, et al. Journal of Vibration and Shock,2019,38(9),131(in Chinese).
史艳莉,何佳星,王文达,等.振动与冲击,2019,38(9),131.
16 Zukas J A, Scheffler D R. International Journal of Impact Engineering,2000,24(9),925.
17 Johnson G R, Cook W H. Proceedings of the seventh international sympo?sium on ballistics,1983,541.
18 Johnson G R, Cook W H. Engineering Fracture Mechanics.1985,21,31.
19 Peirs J, Verleysen P, Paepegem W V, et al. International Journal of Impact Engineering,2011,38(5),406.
20 Lin L, Fan F, Zhi X D. Applied Mechanics and Materials,2013,274,463.
21 Lin L, Fan F, Zhi X D. Applied Mechanics and Materials,2013,274,523.
22 Thakur N, Kumar P, Bharj R S. Materials Today: Proceedings,2018,5(14),27884.
23 Gupta N K, Iqbal M A, Sekhon G S. International Journal of Impact Engineering,2006,32(12),1921.
24 Clausen A H, Tore B?rvik, Hopperstad O S, et al. Materials Science & Engineering A,2004,364(1),260.
25 ?mindák M, Pelagic┴' Z, Pastorek P, et al. Procedia Engineering,2016,136,162.
26 Rojek M, Szymiczek M, Stabik J, et al. Archives of Materials Science & Engineering,2013,63(1),26.
27 Mata?Díaz A, López?Puente J, Varas D, et al. International Journal of Impact Engineering,2017,103,231.
28 Nguyen L H, L?ssig T R, Ryan S, et al. Composites Part A,2016,84,224.
29 Sapozhnikov S B, Kudryavtsev O A, Zhikharev M V. International Journal of Impact Engineering,2015,81,8.
30 Yang K, Zhu B, Cao W W, et al. Materials Reports A: Review Papers,2015,29(7),24(in Chinese).
杨坤,朱波,曹伟伟,等.材料导报:综述篇,2015,29(7),24.
31 Hill R. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1948,193(1033),281.
32 Tsai S W, Wu E M. Journal of Composite Materials,1971,5(1),58.
33 Chang F K, Chang K Y. Journal of Composite Materials,1987,21(9),834.
34 Hashin Z. Journal of Applied Mechanics,1980,47(2),329.
35 Puck A, Schürmann H. Composites Science and Technology,2002,62(12?13),1633.
36 Ye Q. Research on Cohesive Zone Model of Laminated Composites and its Applications. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2012(in Chinese).
叶强.层合复合材料的粘聚区模型及其应用研究.博士学位论文,南京航空航天大学,2012.
37 Liao B B, Liu P F. Composite Structures,2017,159,567.
38 Singh H, Namala K K, Mahajan P. Composites Part B,2015,76,235.
39 Liu P F, Liao B B, Jia L Y, et al. Composite Structures,2016,149,408.
40 Hongkarnjanakul N, Bouvet C, Rivallant S. Composite Structures,2013,106,549.
41 Tan W, Falzon B G, Chiu L N S, et al. Composites Part A,2015,71,212.
42 Gu X J. Research on high velocity impact damage of composite lamina. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2011(in Chinese).
古兴瑾.复合材料层板高速冲击损伤研究.博士学位论文,南京航空航天大学,2011.
43 Hosur M V, Alexander J, Vaidya U K, et al. Composite Structures,2004,63(1),75.
44 Shokrieh M M, Rezaei D. Composite Structures,2003,60(3),317.
45 Heimbs S, Bergmann T, Schueler D, et al. Composite Structures,2014,111,158.
46 Xu M M. High velocity impact resistance of carbon fiber?reinforced metal laminates. Master's Thesis, Beijing Institute of Technology, China,2016(in Chinese).
许明明.碳纤维增强金属层合板抗高速冲击特性研究.硕士学位论文,北京理工大学,2016.
47 Tserpes K I, Labeas G, Papanikos P, et al. Composites Part B,2002,33(7),521.
48 Ismail Y, Yang D, Ye J. Composites Part B,2016,102,9.
49 Koh R, Madsen B. Mechanics of Materials,2018,124,26.
50 Li X, Ma D, Liu H, et al. Composite Structures,2019,207,727.
51 Hahn H T, Tsai S W. Journal of Composite Materials,1973,7(1),102.
52 Wagner T, Heimbs S, Franke F, et al. Composite Structures,2018,204,142.
53 Awoukeng?Goumtcha A, Taddei L, Tostain F, et al. Bio?medical mate?rials and engineering,2014,24(6),2331.
54 Lv H R, Han D W. China Personal Protective Equipment,2012(2),13(in Chinese).
吕海荣,韩大伟.中国个体防护装备,2012(2),13.
55 Fejdy$\grave{a}$ M, ?andwijt M, Habaj W, et al. Fibres & Textiles in Eastern Europe,2015,23(1),89.
56 Palomar M, Lozano?Mínguez E, Rodríguez?Millán M, et al. Composite Structures,2018,201,49.
57 Chen L, Xu Z W, Li J L, et al. Journal of Materials Engineering,2010(11),94(in Chinese).
陈磊,徐志伟,李嘉禄,等.材料工程,2010(11),94.
58 Iva?ez I, Santiuste C, Barbero E, et al. Composite Structures,2011,93(9),2392.
59 Ren C, Liu T, Siddique A, et al. International Journal of Mechanical Sciences,2018,140,119.
60 Schueler D, Toso?PentecoTe N, Voggenreiter H. Composite Structures,2016,153,549.
61 Riks E. International Journal of Solids and Structures,1979,15(7),529.
62 Jia B H, Li G, Xu Z Y, et al. Journal of Vibration and Shock,2018,37(6),157(in Chinese).
贾宝华,李革,徐振洋,等.振动与冲击,2018,37(6),157.
63 Mcwilliams B, Yu J, Pankow M, et al. International Journal of Impact Engineering,2015,86,57.
64 Bandaru A K, Ahmad S. Composites Part B,2016,93,75.
65 Sevkat E, Liaw B, Delale F, et al. Composites Science and Technology,2009,69(7?8),965.
66 Gupta P K, Iqbal M A, Mohammad Z, et al. Thin?Walled Structures,2018,126,58.
67 Senthil K, Iqbal M A. Theoretical & Applied Fracture Mechanics,2013,67?68(5),53.
68 Qin J B, Han Z J, Liu Y Y, et al. Journal of Vibration and Shock,2013,32(24),122(in Chinese).
秦建兵,韩志军,刘云雁,等.振动与冲击,2013,32(24),122.
69 Sun B, Liu Y, Gu B. Composites Part B,2009,40(6),552.
70 Iqbal M A, Tiwari G, Gupta P K, et al. International Journal of Impact Engineering,2015,77,1.
71 Xin S H. Numerical study on the penetration resistence of fibre reinforced plastic laminates. Ph.D. Thesis, University of Science and Technology of China, China,2015(in Chinese).
辛士红.纤维增强树脂基复合材料层合板抗侵彻性能数值模拟研究.博士学位论文,中国科学技术大学,2015.
72 Schwab M, Todt M, Tauchner J, et al. Composite Structures,2018,205,42.
73 Matias G, Marc P, Afsaneh R. Composite Structures,2015,125(1),202.
74 Sheikh A H, Bull P H, Kepler J A. Composites Science and Technology,2009,69(6),704.
75 Matzenmiller A, Lubliner J, Taylor R L. Mechanics of Materials,1995,20(2),125.
[1] 聂金凤, 范勇, 赵磊, 刘相法, 赵永好. 颗粒增强铝基复合材料强韧化机制的研究新进展[J]. 材料导报, 2021, 35(9): 9009-9015.
[2] 秦芳诚, 齐会萍, 李永堂, 刘崇宇, 亓海全, 康跃华. 铝合金环形零件形/性一体化制造技术[J]. 材料导报, 2021, 35(9): 9049-9058.
[3] 彭伟良, 袁斌. 自支撑过渡族金属基电催化析氧材料在碱水电解中的理论基础、研究现状及发展趋势[J]. 材料导报, 2021, 35(9): 9174-9185.
[4] 陈恩丽, 段俊新, 谢智中. N-杂环卡宾活化二氧化碳的研究进展[J]. 材料导报, 2021, 35(9): 9196-9209.
[5] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[6] 金琳, 杨永珍, 樊建锋, 许并社. 碳微球表面功能化对镁基复合材料的增强作用[J]. 材料导报, 2021, 35(8): 8093-8098.
[7] 赵中国, 贾旭妙, 程少华, 王渺, 梁攀旭, 李万顺, 贾仕奎. 聚丙烯/碳纳米管复合材料的结晶性能以及外场响应行为[J]. 材料导报, 2021, 35(8): 8191-8195.
[8] 郝娟娟, 王乙舒, 吴玉峰, 郭福. 废线路板非金属材料回收利用技术现状与展望[J]. 材料导报, 2021, 35(7): 7001-7012.
[9] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[10] 谭聪, 刘洋, 何莹, 李洋, 李博文, 仇浩. 不同粒径金属基纳米颗粒的性质与其环境行为和生物效应的关系[J]. 材料导报, 2021, 35(7): 7121-7126.
[11] 朱菲, 吴祖洁, 程明辉, 管金华, 邹龙. 金属纳米颗粒的生物合成研究进展[J]. 材料导报, 2021, 35(7): 7127-7138.
[12] 卢兵兵, 王海斗, 董丽虹, 赵云才, 王慧鹏. 金属磁记忆疲劳损伤检测的应用现状及发展前景[J]. 材料导报, 2021, 35(7): 7139-7144.
[13] 曾金成, 宋波, 左敦稳, 邓永芳. 外加辅助条件搅拌摩擦焊技术研究进展[J]. 材料导报, 2021, 35(7): 7162-7168.
[14] 张莲芝, 吴张永, 王庭有, 朱启晨, 郭翠霞, 蔡晓明, 莫子勇. 氧化锆添加量对四氧化三铁基复合材料性能的影响[J]. 材料导报, 2021, 35(6): 6035-6041.
[15] 刘敬福, 齐莉, 李广龙, 曲迎东. 真空搅拌TiCp/7075复合材料的组织、力学与耐磨性能[J]. 材料导报, 2021, 35(6): 6114-6119.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed