Application and Development of ABAQUS in Simulating High and Low Velocity Impact Metallic and Composite Targets of Projectiles
TENG Linghong1, CAO Weiwei1,*, ZHU Bo2, QIN Rongman2
1 School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; 2 School of Material Science and Engineering, Shangdong University, Jinan 250061, China
Abstract: As the most widely used nonlinear finite element simulation software, ABAQUS can be used to analyze complex solid and structural mechanics problems, has a superior performance in simulating ballistic impacts. The damage process of target is complicated, theoretical and experimental research is difficult. In order to detect the ballistic performance of targets, many experiments are usually required. Finite element software provides a simpler and more accurate way to solve such problems. The essence of numerical simulation methods is the approximate calculation and characterization of physical phenomena. The accuracy of the results depends on the understanding and mathematical characterization of material properties. Accurate analysis of the problem requires a definition of the failure criteria for the material’s deformation limit. The role of each module of ABAQUS in the process of simulating projectile penetration is briefly introduced. J-C model is most commonly used in metallic materials. Hashin and Chang-Chang criteria are used more in composite materials. Puck’s criteria are more accurate for matrix failure prediction. Nowadays, the application of ABAQUS to bullet impact mainly includes: researching the damage mechanism and the failure process of materials, and predicting the ballistic limit. ABAQUS can not only simulate metallic and 2D composite materials, but also can simulate 3D composites and foam-coded sandwich composites. The combination of ABAQUS/Standard and ABAQUS/Explicit can be used to preload the material to simulate the damage process of the material. This review introduces the role of each module of ABAQUS in the simulated impact process, and illustrates the application of different damage criteria for metallic and composite materials. The application of ABAQUS in simulating high and low velocity impact is highlighted by examples. Finally, based on the summary of the existing researches, some suggestions are presented for the future research and development.
滕凌虹, 曹伟伟, 朱波, 秦溶蔓. ABAQUS在模拟弹丸高低速冲击金属和复合材料靶板方面的应用及研究进展[J]. 材料导报, 2021, 35(11): 11145-11153.
TENG Linghong, CAO Weiwei, ZHU Bo, QIN Rongman. Application and Development of ABAQUS in Simulating High and Low Velocity Impact Metallic and Composite Targets of Projectiles. Materials Reports, 2021, 35(11): 11145-11153.
Qin X Y. The investigation of impact resistance of Aluminum?polymer bilayers plates. Master's Thesis, Beijing Institute of Technology, China,2016(in Chinese).
秦翔宇.铝合金—高聚物层状复合靶板抗冲击性能研究.硕士学位论文,北京理工大学,2016.
2
Sharma A, Mishra R, Jain S, et al. Thin?Walled Structures,2018,126,193.
3
Ebinaa M, Yoshimurab A, Sakauea K, et al. Composite Part A,2016,113,166.
4
Mohagheghian I, Wang Y, Zhou J, et al. International Journal of Solids and Structures,2017,109,46.
5
Rodríguez?Millán M, Ito T, Loya J A, et al. Materials & Design,2016,110,391.
6
Iqbal M A, Senthil K, Sharma P, et al. International Journal of Impact Engineering,2016,96,146.
7
Zhou X, Li K, Chen C H, et al. Journal of Vibration and Shock,2018,37(22),6(in Chinese).
周霞,李凯,陈成杭,等.振动与冲击,2018,37(22),6.
8
Mu?oz R, Martínez?Hergueta F, Gálvez F, et al. Composite Structures,2015,127,141.
9
Rodriguez?Millan M, Garcia?Gonzalez D, Rusinek A, et al. Thin?Walled Structures,2018,123,1.
10
Zhang C, Curiel?Sosa J L, Duodu E A. Journal of Materials Science,2017,52(8),4658.
11
Wang G D, Melly S K. International Journal of Advanced Manufacturing Technology,2017,94(1),1.
12
Zhao G W. Times Agricultural Machinery,2019,46(5),67(in Chinese).
赵国伟.时代农机,2019,46(5),67.
13
Li Y. Ship Science and Technology,2019,41(14),4(in Chinese).
李彦.舰船科学技术,2019,41(14),4.
14
Dandekar C R, Shin Y C. International Journal of Machine Tools and Manufacture,2012,57,102.
15
Shi Y L, He J X, Wang W D, et al. Journal of Vibration and Shock,2019,38(9),131(in Chinese).
史艳莉,何佳星,王文达,等.振动与冲击,2019,38(9),131.
16
Zukas J A, Scheffler D R. International Journal of Impact Engineering,2000,24(9),925.
17
Johnson G R, Cook W H. Proceedings of the seventh international sympo?sium on ballistics,1983,541.
18
Johnson G R, Cook W H. Engineering Fracture Mechanics.1985,21,31.
19
Peirs J, Verleysen P, Paepegem W V, et al. International Journal of Impact Engineering,2011,38(5),406.
20
Lin L, Fan F, Zhi X D. Applied Mechanics and Materials,2013,274,463.
21
Lin L, Fan F, Zhi X D. Applied Mechanics and Materials,2013,274,523.
22
Thakur N, Kumar P, Bharj R S. Materials Today: Proceedings,2018,5(14),27884.
23
Gupta N K, Iqbal M A, Sekhon G S. International Journal of Impact Engineering,2006,32(12),1921.
24
Clausen A H, Tore B?rvik, Hopperstad O S, et al. Materials Science & Engineering A,2004,364(1),260.
25
?mindák M, Pelagic┴' Z, Pastorek P, et al. Procedia Engineering,2016,136,162.
26
Rojek M, Szymiczek M, Stabik J, et al. Archives of Materials Science & Engineering,2013,63(1),26.
27
Mata?Díaz A, López?Puente J, Varas D, et al. International Journal of Impact Engineering,2017,103,231.
28
Nguyen L H, L?ssig T R, Ryan S, et al. Composites Part A,2016,84,224.
29
Sapozhnikov S B, Kudryavtsev O A, Zhikharev M V. International Journal of Impact Engineering,2015,81,8.
30
Yang K, Zhu B, Cao W W, et al. Materials Reports A: Review Papers,2015,29(7),24(in Chinese).
杨坤,朱波,曹伟伟,等.材料导报:综述篇,2015,29(7),24.
31
Hill R. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences,1948,193(1033),281.
32
Tsai S W, Wu E M. Journal of Composite Materials,1971,5(1),58.
33
Chang F K, Chang K Y. Journal of Composite Materials,1987,21(9),834.
34
Hashin Z. Journal of Applied Mechanics,1980,47(2),329.
35
Puck A, Schürmann H. Composites Science and Technology,2002,62(12?13),1633.
36
Ye Q. Research on Cohesive Zone Model of Laminated Composites and its Applications. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2012(in Chinese).
叶强.层合复合材料的粘聚区模型及其应用研究.博士学位论文,南京航空航天大学,2012.
37
Liao B B, Liu P F. Composite Structures,2017,159,567.
38
Singh H, Namala K K, Mahajan P. Composites Part B,2015,76,235.
39
Liu P F, Liao B B, Jia L Y, et al. Composite Structures,2016,149,408.
40
Hongkarnjanakul N, Bouvet C, Rivallant S. Composite Structures,2013,106,549.
41
Tan W, Falzon B G, Chiu L N S, et al. Composites Part A,2015,71,212.
42
Gu X J. Research on high velocity impact damage of composite lamina. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, China,2011(in Chinese).
古兴瑾.复合材料层板高速冲击损伤研究.博士学位论文,南京航空航天大学,2011.
43
Hosur M V, Alexander J, Vaidya U K, et al. Composite Structures,2004,63(1),75.
44
Shokrieh M M, Rezaei D. Composite Structures,2003,60(3),317.
45
Heimbs S, Bergmann T, Schueler D, et al. Composite Structures,2014,111,158.
46
Xu M M. High velocity impact resistance of carbon fiber?reinforced metal laminates. Master's Thesis, Beijing Institute of Technology, China,2016(in Chinese).
许明明.碳纤维增强金属层合板抗高速冲击特性研究.硕士学位论文,北京理工大学,2016.
47
Tserpes K I, Labeas G, Papanikos P, et al. Composites Part B,2002,33(7),521.
48
Ismail Y, Yang D, Ye J. Composites Part B,2016,102,9.
49
Koh R, Madsen B. Mechanics of Materials,2018,124,26.
50
Li X, Ma D, Liu H, et al. Composite Structures,2019,207,727.
51
Hahn H T, Tsai S W. Journal of Composite Materials,1973,7(1),102.
52
Wagner T, Heimbs S, Franke F, et al. Composite Structures,2018,204,142.
53
Awoukeng?Goumtcha A, Taddei L, Tostain F, et al. Bio?medical mate?rials and engineering,2014,24(6),2331.
54
Lv H R, Han D W. China Personal Protective Equipment,2012(2),13(in Chinese).
吕海荣,韩大伟.中国个体防护装备,2012(2),13.
55
Fejdy$\grave{a}$ M, ?andwijt M, Habaj W, et al. Fibres & Textiles in Eastern Europe,2015,23(1),89.
56
Palomar M, Lozano?Mínguez E, Rodríguez?Millán M, et al. Composite Structures,2018,201,49.
57
Chen L, Xu Z W, Li J L, et al. Journal of Materials Engineering,2010(11),94(in Chinese).
陈磊,徐志伟,李嘉禄,等.材料工程,2010(11),94.
58
Iva?ez I, Santiuste C, Barbero E, et al. Composite Structures,2011,93(9),2392.
59
Ren C, Liu T, Siddique A, et al. International Journal of Mechanical Sciences,2018,140,119.
60
Schueler D, Toso?PentecoTe N, Voggenreiter H. Composite Structures,2016,153,549.
61
Riks E. International Journal of Solids and Structures,1979,15(7),529.
62
Jia B H, Li G, Xu Z Y, et al. Journal of Vibration and Shock,2018,37(6),157(in Chinese).
贾宝华,李革,徐振洋,等.振动与冲击,2018,37(6),157.
63
Mcwilliams B, Yu J, Pankow M, et al. International Journal of Impact Engineering,2015,86,57.
64
Bandaru A K, Ahmad S. Composites Part B,2016,93,75.
65
Sevkat E, Liaw B, Delale F, et al. Composites Science and Technology,2009,69(7?8),965.
66
Gupta P K, Iqbal M A, Mohammad Z, et al. Thin?Walled Structures,2018,126,58.
67
Senthil K, Iqbal M A. Theoretical & Applied Fracture Mechanics,2013,67?68(5),53.
68
Qin J B, Han Z J, Liu Y Y, et al. Journal of Vibration and Shock,2013,32(24),122(in Chinese).
秦建兵,韩志军,刘云雁,等.振动与冲击,2013,32(24),122.
69
Sun B, Liu Y, Gu B. Composites Part B,2009,40(6),552.
70
Iqbal M A, Tiwari G, Gupta P K, et al. International Journal of Impact Engineering,2015,77,1.
71
Xin S H. Numerical study on the penetration resistence of fibre reinforced plastic laminates. Ph.D. Thesis, University of Science and Technology of China, China,2015(in Chinese).