Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 203-206    https://doi.org/10.11896/j.issn.1005-023X.2018.02.009
  物理   材料研究 |材料 |
苯磺酸甜菜碱表面改性阳离子交换膜
黄全江1,2,南君1,2,王三反1,2,李欣怡1,2,邹信1,2,张学敏1,2
1 寒旱地区水资源综合利用教育部工程中心, 兰州 730070
2 兰州交通大学环境与市政工程学院, 兰州 730070
Benzenesulfonic Acid Betaine Surface Modified Cation Exchange Membrane
Quanjiang HUANG1,2,Jun NAN1,2,Sanfan WANG1,2,Xinyi LI1,2,Xin ZOU1,2,Xuemin ZHANG1,2
1 Engineering Research Center for Cold and Arid Regions Water Resource Comprehensive Utilization, Ministry of Education, Lanzhou 730070
2 School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070
下载:  全 文 ( PDF ) ( 1788KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用等离子体辉光放电技术,在以聚苯乙烯为基膜的阳离子交换膜表面接枝苯磺酸甜菜碱(SBMA)单体,制备出具有高选择透过性的阳离子交换膜。对改性前后的膜进行扫描电镜(SEM)、傅里叶红外光谱分析(FTIR)及氯离子泄漏率测试,表征膜的改性效果。结果表明:在SBMA浓度为60 g/L,等离子照射强度为0.7 W/cm 2,照射时间为7 min,照射气体氛围为氩气的条件下,改性效果最佳。改性膜含有的活性基团明显增多,表面致密均匀,氯离子泄漏率由原膜的14%降低至2%以下。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄全江
南君
王三反
李欣怡
邹信
张学敏
关键词:  苯磺酸甜菜碱  等离子体辉光放电  离子交换膜  表面改性  氯离子泄漏率    
Abstract: 

The cation exchange membrane with high selectivity was prepared by grafting benzenesulfonic acid betaine (SBMA) on the polystyrene-based cation exchange membrane by plasma glow discharge.In order to characterize the modification of the membrane, the SEM, FTIR and chloride ion leakage rates were measured before and after the modification. The results showed that the modified effect was the best when SBMA concentration was 60 g/L, the intensity of plasma irradiation was 0.7 W/cm 2, the irradiation time was 7 min, and the irradiation gas atmosphere was argon. After modification, the active groups contained in the membrane were obviously increased and the surface density was uniform. The ion chloride leakage rate of the modified membrane decreased from 14% to 2%.

Key words:  benzenesulfonic acid betaine    plasma glow discharge    ion-exchange membrane    surface modification    chloride ion leakage rate
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB332  
基金资助: 国家科技支撑计划项目(2015BAE04B01);国家自然科学基金(21466019)
引用本文:    
黄全江,南君,王三反,李欣怡,邹信,张学敏. 苯磺酸甜菜碱表面改性阳离子交换膜[J]. 《材料导报》期刊社, 2018, 32(2): 203-206.
Quanjiang HUANG,Jun NAN,Sanfan WANG,Xinyi LI,Xin ZOU,Xuemin ZHANG. Benzenesulfonic Acid Betaine Surface Modified Cation Exchange Membrane. Materials Reports, 2018, 32(2): 203-206.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.009  或          http://www.mater-rep.com/CN/Y2018/V32/I2/203
图1  SBMA的分子结构
图2  等离子接枝反应过程
The type of film Ion exchange capacity
mmol/g
Chloride ion
leakage rate/%
Resistance
Ω·cm2
Hydrophilic
angle/(°)
Cation migration
ratio/%
IONSEP-HC-C original film 2.49 14.00 8.835 90 88.9
IONSEP-HC-C modified film 2.60 1.29 6.547 58 99.2
表1  改性前后膜性能参数比较
图3  SBMA单体浓度对改性膜氯离子泄漏率的影响
图4  等离子体放电时间对改性膜氯离子泄漏率的影响
Gas atmosphere Vacuum Nitrogen Argon
Chloride ion
leakage rate/%
2.97 2.46 1.29
表2  辉光放电气体氛围对改性膜选择透过性的影响
图5  (a)原膜及(b)60 g/L,0.7 W/cm2,7 min;(c)60 g/L, 0.7 W/cm2,10 min;(d)60 g/L,1.2 W/cm2,7 min不同条件下改性膜的SEM图
图6  改性前后膜的FTIR分析
1 Ross G J, Watts J F, Hill M P , et al. Surface modification of poly (vinylidene fluoride) by alkaline treatment 1.The degradation mecha-nism[J]. Polymer, 2000,41:1695.
2 Liu Q, Ye H, Zhang Y Z , et al. Preparation and whey protein separation property of poly (ethylene-covinyl alcohol) ultrafiltration membrane[J]. Polymer Materials Science and Engineering, 2016,32(12):145(in Chinese).
3 刘琦, 叶卉, 张玉忠 , 等. 乙烯-乙烯醇共聚物超滤膜的制备及对乳清蛋白的分离性能[J]. 高分子材料科学与工程, 2016,32(12):145.
4 Jedidi I, Khemakhem S, Sa?di S , et al. Preparation of a new ceramic microfiltration membrane from mineral coal fly ash: Application to the treatment of the textile dying effluents[J]. Powder Technology, 2011,208(2):427.
5 Barredo-Damas S, Alcaina-Miranda M I, Bes-Piá A , et al. Ceramic membrane behavior in textile wastewater ultrafiltration[J]. Desalination, 2010,250(2):623.
6 Wang F L, Ran D Q, Zhang T , et al. Preparation and MFC performances of cation exchange membrances based on multiblock sulfonated poly(arylene ether sulfone)s[J]. Acta Polymerica Sinica, 2014,45(5):657.
7 Shimizu M, Saito T, Isogai A . Water-resistant and high oxygen-barrier nanocellulose films with interfibrillar cross-linkages formed through multivalent metal ions[J]. Ournal of Membrane Science, 2016,500:1.
8 Ogieglo W, Grooth J D, Wormeester H , et al. Relaxation induced optical anisotropy during dynamic overshoot swelling of zwitterionic polymer films[J]. Thin Solid Films, 2013,545:320.
9 Zhao Y F, Zhu L P, Yi Z , et al. Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive[J]. Journal of Membrane Science, 2013,440:40.
10 Chang Y, Chang W J, Shi Y J . Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compa-tibility via atmospheric plasma-induced surface copolymerization[J]. ACS Applied Materials & Interfaces, 2011,3:1228.
11 Chen S H, Chang Y, Lee K R . Hemocompatible control of sulfobetaine-grafted polypropylene fibrous membranes in human whole blood via plasma-induced surface zwitterionization[J]. Langmuir, 2012,28(51):17733.
12 Jhong J F, Venault A, Hou C C , et al. Surface zwitterionization of expanded poly(tetrafluoroethylene) membranes via atmospheric plasma-induced polymerization for enhanced skin wound healing[J]. ACS Applied Materials & Interfaces, 2013,5:6732.
13 Chen S F, Li L Y, Zhao C , et al. Surfac hydration: principles and applications toward low-fouling/nonfouling biomaterials[J]. Polymer, 2010,51(23):5283.
14 Wang X X . Dielectric barrier discharge and its applications[J]. High Voltage Engineering. 2009,35(1):1(in Chinese).
15 王新新 . 介质阻挡放电及其应用[J]. 高电压技术, 2009,35(1):1.
16 Kogelschatz U . Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chemistry and Plasma Processing, 2003,23(1):1.
17 Massines F, Gherardi N, Naude N , et al. Recent advances in the understanding of homogeneous dielectric barrier discharges[J]. The European Physical Journal Applied Physics, 2009,47(2):22805.
18 Wang S F, Wan Y H, Zhang G J , et al. The revisions of migration path of ion in membrance and selective property[J]. Journal of Lanzhou Railway University(Natural Sciences), 2000,19(3):72(in Chinese).
19 王三反, 完颜华, 张国俊 , 等. 离子迁移途径及选择透过性的理论修正[J]. 兰州铁道学院学报, 2000,19(3):72.
20 Zhang G J, Meng H, Wang S F , et al. Elementary study of the new theory of potential close in the pore and the “cavity” transfer[J]. Environmental Chemistry, 2002,21(5):417(in Chinese).
21 张国俊, 孟洪, 王三反 , 等. 孔道电位封闭及“空穴”传递理论初探[J]. 环境化学, 2002,21(5):417.
[1] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[2] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[3] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[4] 王爱国, 朱愿愿, 李燕, 刘开伟, 徐海燕, 孙道胜, 范良朝. 表面改性硅/铝质材料及其在水泥基材料中应用的研究进展[J]. 材料导报, 2019, 33(15): 2538-2545.
[5] 程国君, 产爽爽, 陈晨, 钱家盛, 丁国新, 王周锋. 改性剂对TiN/PS纳米复合材料流变行为的影响[J]. 材料导报, 2019, 33(14): 2444-2449.
[6] 姜啟亮, 陈琦, 姜付本, 陈宬, VERPOORT Francis. 降冰片烯及其衍生物开环易位聚合的研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1165-1173.
[7] 邵明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1181-1186.
[8] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[9] 吴家宇, 李丹, 康龙, 冉奋. 电化学诱导表面引发原子转移自由基聚合构筑离子型聚醚砜膜功能表面[J]. 《材料导报》期刊社, 2018, 32(4): 549-554.
[10] 胡晶, 谢国治, 顾家新, 谌静, 谭鑫, 王瑞, 邢贝贝. 多元助剂改性羰基铁粉雷达波低频吸波性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 520-524.
[11] 刘伟东, 张旭, 屈华. FeB和Fe2B价电子结构与钢表面渗硼层硬化本质[J]. 《材料导报》期刊社, 2018, 32(4): 672-675.
[12] 杨平军,袁剑民,何莉萍. 碳纤维表面改性及其对碳纤维/树脂界面影响的研究进展[J]. 《材料导报》期刊社, 2017, 31(7): 129-136.
[13] 张勇,王雄禹,于静,曹维成,冯鹏发,焦生杰. 高温应用钼及钼合金表面改性研究进展*[J]. 《材料导报》期刊社, 2017, 31(7): 83-87.
[14] 王晓东, 云斯宁, 张太宏, 尹洪峰, 徐德龙. 硅烷偶联剂表面改性玄武岩纤维增强复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 77-83.
[15] 沈佳丽, 石畅, 施冬健, 章朱迎, 陈明清. 多巴胺对骨修复材料表面改性的研究进展[J]. 《材料导报》期刊社, 2017, 31(21): 54-61.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed