Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 149-153    https://doi.org/10.11896/j.issn.1005-023X.2017.012.031
  计算模拟 |
考虑不同应力水平影响的混凝土徐变预测模型修正
陈邦尚1, 陈松2, 王岩3, 宁聪4
1 重庆水利电力职业技术学院, 重庆 402160;
2 中建水务环保有限公司, 深圳 518118;
3 重庆同望水利水电工程设计有限公司, 重庆 401120;
4 重庆交通大学河海学院, 重庆 400074
A Correction for the Prediction Model of Concrete Creep Involving Different Stress Levels
CHEN Bangshang1, CHEN Song2, WANG Yan3, NING Cong4
1 Chongqing Water Resources and Electric Engineering College, Chongqing 402160;
2 China Construction Water and Environmental Protection Co,Ltd, Shenzhen 518118;
3 Chongqing Tongwang Water Conservancy and Hydropower Engineering Design Co,Ltd, Chongqing 401120;
4 School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074
下载:  全 文 ( PDF ) ( 1566KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为开展混凝土徐变预测模型修正研究,对不同应力水平下的混凝土进行了徐变试验和数值模拟,并进行了相互印证。通过数值模拟,研究了拉压应力、周期应力、双轴应力下的徐变特性,针对徐变预测模型CEB/FIP 1990估算精度低的现状,基于不同应力水平下混凝土徐变特性,结合工程实际给出了便于运用的徐变系数修正值。研究结果表明,采用的数值模拟方法为混凝土徐变预测模型的修正提供了一条新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈邦尚
陈松
王岩
宁聪
关键词:  徐变系数  预测模型  不同应力水平  数值模拟    
Abstract: In order to carry out the research on the modification of concrete creep prediction model, the creep test and numerical simulation of concrete under different stress levels were carried out. Through numerical simulation, the creep characteristics of concrete under tensile and compressive stress, cyclic stress and biaxial stress were studied. For the low accuracy of the creep prediction model CEB/FIP 1990, the useful creep coefficient correction value was given based on creep characteristics of concrete under different stress levels. The results show that the numerical simulation method in this paper provides a new idea for the modification of concrete creep prediction model.
Key words:  creep coefficient    prediction model    different stress levels    numerical simulation
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TU375  
作者简介:  陈邦尚:男,1970年生,博士,教授级高级工程师,研究方向为水利水电建筑工程管理 E-mail:23182169@sina.com
引用本文:    
陈邦尚, 陈松, 王岩, 宁聪. 考虑不同应力水平影响的混凝土徐变预测模型修正[J]. 《材料导报》期刊社, 2017, 31(12): 149-153.
CHEN Bangshang, CHEN Song, WANG Yan, NING Cong. A Correction for the Prediction Model of Concrete Creep Involving Different Stress Levels. Materials Reports, 2017, 31(12): 149-153.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.031  或          http://www.mater-rep.com/CN/Y2017/V31/I12/149
1 Jie Wencheng, Li Zite, Xu Yanzhao. Study on effect of concrete creep of long-term deflection of continuous rigid frame bridge[J]. J Henan University of Urban Construction,2012,21(1):4(in Chinese).
解文成,李子特,徐艳昭.混凝土徐变对连续刚构桥长期下挠的影响研究[J].河南城建学院学报,2012,21(1):4.
2 Cao Guohui, Hu Jiaxing, Zhang Kai, et al. Correction analysis on prediction model of concrete creep[J]. Build Struct,2014,44(5):45(in Chinese).
曹国辉,胡佳星,张锴,等.混凝土徐变预测模型修正分析[J].建筑结构,2014,44(5):45.
3 Yang Mingchao, Bu Tian. Correction of concrete box girder creep effect prediction model[J].J Wuhan Univ Technol:Transp Sci Eng,2015,39(2):441(in Chinese).
杨名超,卜天.混凝土简支箱梁徐变效应预测模型修正[J].武汉理工大学学报:交通科学与工程版,2015,39(2):441.
4 Wang Defa, Zhang Haobo. Uniaxial tensile creeo of concrete[J]. J Xi’an Jiaotong Univ,2000,34(3):95(in Chinese).
王德法,张浩博. 轴拉荷载下混凝土徐变性能的研究[J]. 西安交通大学学报,2000,34(3):95.
5 Hui Rongyan, Huang Guoxing, Yi Bingruo, et al. Experimental study on three axis of concrete[J].J Hydraul Eng,1993(7):75(in Chinese).
惠荣炎,黄国兴,易冰若,等. 混凝土三轴徐变的试验研究[J]. 水利学报,1993(7):75.
6 Huang Shengqian, Yang Yongqing, Li Xiaobin, et al. A uniform formulation of space creep of concrete under various stress state[J].Mater Rev:Res,2013,27(1):150(in Chinese).
黄胜前,杨永清,李晓斌,等.不同应力状态下混凝土空间徐变的统一表达式[J]. 材料导报:研究篇,2013,27(1):150.
7 Chen Song.Numerical analysis and experiments for high strength concrete creep[D].Nanjing: Nanjing Hydraulic Research Institute,2009(in Chinese).
陈松.混凝土徐变过程数值分析及试验研究[D].南京:南京水利科学研究院,2009.
8 Zhu Bofang. Modulus of elasticity of concrete,creep and relaxation coefficient[J].J Hydraul Eng,1985(9):54(in Chinese).
朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报,1985(9):54.
9 Chen Song, Wang Yan, Ning Cong. Macro-meso analysis for features of concrete creep under cyclic load[J]. Mater Rev:Res,2016,30(6):153(in Chinese).
陈松,王岩,宁聪.循环荷载下混凝土徐变特性的宏细观分析[J].材料导报:研究篇,2016,30(6):153.
10 黄国兴,惠荣炎,王秀军.混凝土徐变与收缩[M].北京:中国电力出版社,2011.
11 Zhao Qilin,Chen Li,Zhai Kewei,et al.Creep and shrinkage of high strength concrete for bridges under complex condition[J].J PLA Univ Sci Technol:Nat Sci Ed,2011,12(5):459(in Chinese).
赵启林,陈立,翟可为,等.复杂状态下桥用高强混凝土收缩徐变性能试验[J].解放军理工大学学报:自然科学版,2011,12(5):459(in Chinese).
12 Tang Yunqing, Ke Minyong, Li Xiaolin, et al. Numerical simulation for creep of high strength concrete and its experimental verification[J]. Hydro Sci Eng,2013(6):29(in Chinese).
唐云清,柯敏勇,李霄琳,等.高强混凝土双轴徐变数值模拟及试验验证[J].水利水运工程学报,2013(6):29.
[1] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[2] 崔利群, 韩胜利, 李达人, 胡建召, 刘祖岩. 钨铜粉末轧制的数值模拟研究[J]. 材料导报, 2019, 33(z1): 358-361.
[3] 杨亚涛, 郭宝超, 龚宏伟, 蒋恩. 基于有限元分析的第三代压水堆支承柱组件激光焊接工艺研究[J]. 材料导报, 2019, 33(z1): 420-424.
[4] 王泳丹, 刘子铭, 郝培文. 综论沥青的疲劳损伤自愈合行为:理论研究,评价方法,影响因素,数值模拟[J]. 材料导报, 2019, 33(9): 1517-1525.
[5] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[6] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[7] 浦娟, 谢依汝, 胡庆贤, 胥国祥, 朱蔡琛. 单缆式焊丝GMAW电弧物理行为的数值模拟[J]. 材料导报, 2019, 33(4): 689-693.
[8] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[9] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[10] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[11] 李文旭,马昆林,龙广成,谢友均,马聪,李宁. 自密实混凝土拌合物稳定性动态监测及数值模拟研究进展[J]. 材料导报, 2019, 33(13): 2206-2213.
[12] 丁述宇, 马国政, 徐滨士, 王海斗, 陈书赢, 何鹏飞, 王译文. 等离子喷涂层微观成形过程数值模拟研究现状[J]. 材料导报, 2019, 33(11): 1889-1896.
[13] 田捍卫, 王爱琴, 谢敬佩, 苌清华, 刘帅洋. 铜铝复合板铸轧工艺优化及实验分析[J]. 材料导报, 2019, 33(10): 1706-1711.
[14] 安晓龙, 吕云卓, 覃作祥, 陆兴. 同轴送粉激光3D打印光粉耦合作用以及熔池气液界面追踪数值模拟的研究进展[J]. 材料导报, 2019, 33(1): 167-174.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed