Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 171-175    https://doi.org/10.11896/j.issn.1005-023X.2018.02.002
  物理   材料研究 |材料 |
Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能
郑奎1,袁昌来2,周星星1,王维清1,许积文2,周昌荣2
1 西南科技大学分析测试中心, 绵阳 621010
2 桂林电子科技大学,广西信息材料重点实验室,桂林 541004
Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics
Kui ZHENG1,Changlai YUAN2,Xingxing ZHOU1,Weiqing WANG1,Jiwen XU2,Changrong ZHOU2
1 Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010
2 Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004
下载:  全 文 ( PDF ) ( 4482KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

采用传统固相反应法制备了一种无铅储能铁电陶瓷 (1-x)Ba0.04Bi0.48Na0.48TiO3-xSrTiO3 (x=0.27、0.28、0.30、0.32、0.34、0.36),研究了该陶瓷体系的微观结构、铁电、介电和电导率特征。所有陶瓷均形成了钙钛矿结构固溶体,晶粒尺寸均匀且致密。各陶瓷所得铁电曲线趋于双电滞回线,呈现反铁电特征,剩余极化强度较小,击穿强度高。当x=0.34时,可获得0.977 J/cm 3的较优储能值,陶瓷弥散程度高,表现为典型的弛豫特性。此含量对应低频下陶瓷的离子电导率为2.4×10 -8 S/cm,电子电导率为6.02×10 -13 S/cm,表明离子电导居于主导地位。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑奎
袁昌来
周星星
王维清
许积文
周昌荣
关键词:  Ba0.04Bi0.48Na0.48TiO3-SrTiO3  储能  铁电性  微结构    
Abstract: 

(1-x)Ba0.04Bi0.48Na0.48TiO3-xSrTiO3 (x=0.27,0.28,0.30,0.32,0.34 and 0.36) lead-free energy storage cera-mics were produced by conventional solid-state reaction processes. Microstructures, electrical properties, dielectric properties and conductivity characteristic of BBNT-xST ceramics were investigated. All of the ceramics formed solid solutions with simple perovskite structure and grain size of the ceramics is uniform and compact. Ferroelectric curves of all the ceramics showed a double hysteresis loop owning a quite low remnant polarization and high breakdown strength, demonstrating an antiferroelectric characteristic. Up to x=0.34, the largest energy-storage density of 0.977 J/cm 3 was obtained and high dielectric dispersion of the ceramic suggested a typical relaxor behavior. Electronic conductivity of the ceramic with x=0.34 was 6.02×10 -13 S/cm while the corresponding ionic conductivity 2.4×10 -8 S/cm at low frequency, denoting that the ionic conductivity was dominant in conduction processes.

Key words:  Ba0.04Bi0.48Na0.48TiO3-SrTiO3    energy-storage    ferroelectric    microstructures
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  TB34  
基金资助: 国家自然科学基金(11464006)
引用本文:    
郑奎,袁昌来,周星星,王维清,许积文,周昌荣. Ba0.04Bi0.48Na0.48TiO3-SrTiO3陶瓷微结构和储能性能[J]. 《材料导报》期刊社, 2018, 32(2): 171-175.
Kui ZHENG,Changlai YUAN,Xingxing ZHOU,Weiqing WANG,Jiwen XU,Changrong ZHOU. Microstructures and Energy-storage Properties of Ba0.04Bi0.48Na0.48TiO3-SrTiO3 Ceramics. Materials Reports, 2018, 32(2): 171-175.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.002  或          http://www.mater-rep.com/CN/Y2018/V32/I2/171
图1  BBNT-xST陶瓷的XRD谱
图2  BBNT-xST陶瓷的扫描电镜图
图3  BBNT-xST陶瓷的电滞回线
图4  BBNT-xST陶瓷的储能密度和储能效率
图5  BBNT-0.34ST陶瓷的电滞回线
图6  BBNT-0.34ST陶瓷的储能密度和储能效率随电场的变化
图7  BBNT-xST陶瓷的介电常数/损耗-温度/频率曲线
图8  在10 kHz下BBNT-xST陶瓷的ln(1/ε-1/εm)和ln(T-Tm)的关系
图9  BBNT-0.34ST陶瓷的室温电阻随频率对数的变化
图10  BBNT-0.34ST陶瓷的lgI-lgV曲线
Frequency/Hz 40 102 103 104 105 106 107
Resistance/Ω 4.1×106 1.7×106 1.8×105 1.9×104 2.0×103 2.2×102 19
Ion conductivity
S/cm
2.4×10-8 5.9×10-8 5.6×10-7 5.3×10-6 4.9×10-5 4.5×10-4 5.1×10-3
表1  BBNT-0.34ST陶瓷在各个频率下的离子电导率
1 Rodel J, Jo W, Seifert K T P , et al. Perspective on the development of lead-free piezoceramics[J]. Journal of the American Ceramic Society, 2009,92(6):1153.
2 Aksel E, Jones J L . Advances in lead-free piezoelectric materials for sensors and actuators[J]. Sensors, 2010,10(3):1935.
3 Chen M, Xiao D Q, Sun Y , et al. Recent progresses of sodium bismuth titanate based lead-free piezoelectric ceramics[J]. Journal of Functional Materials, 2007,38(8):1229(in Chinese).
4 陈敏, 肖定全, 孙勇 , 等. 钛酸铋钠基无铅压电陶瓷研究近期进展[J]. 功能材料, 2007,38(8):1229.
5 Zhao J, Yan C J, Wang G M . Studies on the fabrication by citrate method and piezoelectric properties of (Na, Bi)TiO3 ceramic[J]. China Ceramics, 2010,46(4):47(in Chinese).
6 赵俊, 严春杰, 王戈明 . Na0.5Bi0.5TiO3陶瓷介电性能的实验研究[J]. 中国陶瓷, 2010,46(4):47.
7 Takenaka T, Sakat K . Dielectric, piezoelectric and pyroelectric properties of (Na1/2Bi1/2)TiO3-based ceramics[J]. Ferroelectrics, 1989,20(1):1016.
8 Ranjan R, Dviwedi A . Structure and dielectric properties of (Na0.5-Bi0.5)1-xBaxTiO3:0≤x≤0.10[J]. Solid State Communications, 2005,135(6):394.
9 Chu B J, Li G R, Jiang X P , et al. Piezoelectric property and relaxation phase transition of (Na1/2Bi1/2)TiO3-BaTiO3 system[J]. Journal of Inorganic Materials, 2000,15(5):815(in Chinese).
10 初保进, 李国荣, 江向平 , 等. ( Na1/2Bi1/2)TiO3-BaTiO3系陶瓷压电性及弛豫相变研究[J]. 无机材料学报, 2000,15(5):815.
11 Zhao M L, Wang C L, Ai S T , et al. Dielectric and piezoelectric properties of Na0.5Bi0.5TiO3-BaTiO3 ceramics[J]. Journal of Inorga-nic Materials, 2002,17(1):61(in Chinese).
12 赵明磊, 王春雷, 艾树涛 , 等. Na0.5Bi0.5TiO3-BaTiO3陶瓷的介电和压电性能研究[J]. 无机材料学报, 2002,17(1):61.
13 Takenaka T, Maruyama K . ( Na1/2Bi1/2)TiO3-BaTiO3 system for lead-free piezoelectric ceramics[J]. Japanese Journal of Applied Phy-sics, 1991,30(9B):2236.
14 Jo W, Schaab S, Sapper E , et al. On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6mol% BaTiO3[J]. Journal of Applied Physics, 2011,110(7):074106-1.
15 Li Y M, Chen W, Xu Q , et al. Investigation of phase transition in Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3 system material[J]. Journal of Functional Materials, 2004,35(3):341(in Chinese).
16 李月明, 陈文, 徐庆 , 等. Na0.5Bi0.5TiO3-K0.5Bi0.5TiO3系铁电体的相变研究[J]. 功能材料, 2004,35(3):341.
17 Smolenskii G A, Isupov V A, Agranovskaya A I , et al. New ferroelectrics of complex composition[J]. Soviet Physics Solid State, 1961,2(11):2651.
18 Smolensky G . Ferroelectrics with diffuse phase transition[J]. Fer-roelectrics, 1984,53(1):129.
19 Chou X J, Zhai J W, Yao X . Relaxor behavior and dielectric properties of La2O3-doped barium zirconium titanate ceramics for tunable device applications[J]. Materials Chemistry & Physics, 2008,109(1):125.
20 Khemakhem L, Kabadou A, Maalej A , et al. New relaxor ceramic with composition BaTi1-x(Zn1/3Nb2/3)xO3[J]. Journal of Alloys and Compounds, 2008,452(2):451.
21 Chen C H, Amine K . Ionic conductivity, lithium insertion and extraction of lanthanum lithium titanate[J]. Solid State Ionics, 2001,144(1):51.
22 Chen K, Huang M, Shen Y , et al. Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder[J]. Solid State Ionics, 2012,235(21):8.
[1] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[4] 阿比迪古丽·萨拉木, 吾尔尼沙·依明尼亚孜, 买买提热夏提·买买提, 吴钊峰. 掺杂对BiFeO3薄膜电、磁特性影响综述[J]. 材料导报, 2019, 33(5): 791-796.
[5] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[6] 卫芳彬, 张雷阳, 王颖, 李洋, 刘岗. 二氧化铈掺杂钛酸铋钠基陶瓷的高储能密度及温度稳定性[J]. 材料导报, 2019, 33(16): 2648-2653.
[7] 弯艳玲, 张猛, 杨健, 于化东. 多尺度微结构对铝合金表面疏水性能的影响[J]. 材料导报, 2019, 33(16): 2715-2719.
[8] 魏明海, 孙丽, 张春巍, 齐佩佩, 朱洁. 纳米氧化锆和氧化硅混合体系剪切增稠液的流变性能[J]. 材料导报, 2019, 33(12): 1969-1974.
[9] 薛宗伟, 李心慰, 栾旭, 罗旭东, 徐若梦, 吴锋. 纳米氧化锆对氧化镁陶瓷抗热震性的影响[J]. 材料导报, 2019, 33(10): 1630-1633.
[10] 张潇华, 于思荣, 谭哲, 郭丽娟, 刘旭. 304不锈钢在Al-6Si-10Cu储能合金液中的腐蚀行为[J]. 材料导报, 2019, 33(10): 1681-1684.
[11] 王爱国,吕邦成,刘开伟,马 雪,徐海燕,谭京梅. 珊瑚骨料混凝土性能及微结构的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1528-1533.
[12] 尹雪亮, 陈敏, 王楠, 徐磊, 彭可武. Y2O3添加对MA-CA2-CA6复合材料烧结行为的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1357-1361.
[13] 肖水清, 刘杰, 肖白军, 邓欣, 伍尚华. 实现Ti(C,N)基金属陶瓷强韧化的技术路径[J]. 《材料导报》期刊社, 2018, 32(7): 1129-1138.
[14] 王赫, 王洪杰, 王闻宇, 金欣, 林童. 聚丙烯腈基碳纳米纤维在超级电容器电极材料中的应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 730-734.
[15] 宋昊, 谢友均, 龙广成. 水泥乳化沥青砂浆研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 836-846.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed