Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 21100131-9    https://doi.org/10.11896/cldb.21100131
  无机非金属及其复合材料 |
Si光阳极稳定性提高策略研究进展
王蜀湘1, 卢星宇1, 邹力1, 任洁1, 王留留1, 谢佳乐1,2,*
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
Research Progress on Improvement Strategies of Silicon Photoanode Stability
WANG Shuxiang1, LU Xingyu1, ZOU Li1, REN Jie1, WANG Liuliu1, XIE Jiale1,2,*
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 10546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用光电化学水分解技术实现绿氢制取是解决人类面临的能源危机和环境污染的极有效与可行的途径之一,受到广泛的关注与研究。半导体Si作为一种优异的光电极材料,具有理想的1.12 eV窄带隙、宽太阳光谱吸收范围(300~1 100 nm)、高的载流子传输性能(晶体硅μn=1 350 cm2/(V·s),μp=500 cm2/(V·s),常温)以及高结晶性等优点。但是,Si的价带边远低于水分解析氧反应1.23 VRHE,以及析氧反应涉及四电子转移过程,导致Si光阳极本征析氧反应动力学缓慢;同时,Si光阳极表面会生成绝缘性SiO2层或SiO2(OH)2-层,导致严重的光腐蚀和稳定性问题等,成为限制其实际应用的重大挑战。近年来,研究者提出了许多提高Si光阳极光氢转换效率与稳定性的策略。本文重点对Si光阳极的提高策略研究进展进行综述,包括催化层、保护层、电解液保护以及界面工程四类;其次对光电化学水分解基本原理以及Si半导体材料作光阳极的可行性与优缺点进行分析;最后基于上述研究进展,对提高Si光阳极效率与稳定性的未来发展进行了综述与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王蜀湘
卢星宇
邹力
任洁
王留留
谢佳乐
关键词:  Si光阳极  光电化学水解  稳定性  提高策略    
Abstract: Green hydrogen produced by photoelectrochemical water splitting technology is one of the most effective and feasible approaches to solve the energy crisis and environmental pollution, which has attracted extensive attention and research. The semiconductive silicon is an excellent photoelectrode material, which has several advantages such as an ideal narrow band gap of 1.12 eV, the wide solar spectrum absorption (300—1 100 nm), and the high carrier mobility (Crystal Si, μn=1 350 cm2/(V·s), μp=500 cm2/(V·s), RT) and high crystallinity. However, the valence band edge is far lower than the potential of water oxidation (1.23 VRHE). The water oxidation reaction is a four-electron transfer process. Thus, the intrinsic oxygen evolution kinetics of silicon photoanodes is sluggish. Meanwhile, the insulating SiO2 or/and SiO2(OH)2- generated on the surface of silicon photoanodes would induce the serious photocorrosion and the issue of stability. The above limits greatly hinder the practical applications of silicon photoanodes. Recently, researchers have developed some strategies to improve the solar-to-hydrogen efficiency and stabi-lity of silicon photoanodes. This review focuses on the research progress of protection strategies of silicon photoanodes, including four improvement strategies:catalytic layer, protective layer, electrolyte protection and interface engineering. Secondly, the basic principle of photoelectrochemical water splitting and the feasibility, advantages and disadvantages of silicon semiconductor material as photoanode are analyzed. Finally, we discuss the perspectives on the potential investigation directions for improving the efficiency and stability of silicon photoanodes.
Key words:  silicon photoanode    photoelectrochemical water splitting    stability    improvement strategy
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  O64  
基金资助: 四川省天府峨眉计划项目;国家自然科学基金委青年项目(21703150);四川省科技计划项目(2020YJ0123);西南石油大学“揭榜挂帅”项目(2021JBGS08)
通讯作者:  *谢佳乐,博士,四川省高层次人才引进计划入选者,副研究员,硕士研究生导师。曾于2009年和2014年获得西南大学学士和博士学位;此后在西南大学和德国伊尔梅瑙工业大学以博士后和访问学者身份开展研究工作,现任教于西南石油大学。长期从事低维纳米材料和光伏制氢等相关领域的研究,并取得了一系列研究成果,以第一或通信作者身份在Energy & Environmental Science、Nano Energy、Journal of Materials Chemistry A、ACS Sustainable Chemistry & Engineering等专业期刊上发表学术论文44篇,获授权或公开美国和中国发明专利9项,参与编著出版3部学术专著。jialexie@swpu.edu.cn   
作者简介:  王蜀湘,2020年6月毕业于西南石油大学,获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。
引用本文:    
王蜀湘, 卢星宇, 邹力, 任洁, 王留留, 谢佳乐. Si光阳极稳定性提高策略研究进展[J]. 材料导报, 2024, 38(2): 21100131-9.
WANG Shuxiang, LU Xingyu, ZOU Li, REN Jie, WANG Liuliu, XIE Jiale. Research Progress on Improvement Strategies of Silicon Photoanode Stability. Materials Reports, 2024, 38(2): 21100131-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100131  或          http://www.mater-rep.com/CN/Y2024/V38/I2/21100131
1 Boettcher S W, Spurgeon J M, Putnam M C, et al. Science, 2010, 327(5962), 185.
2 Yang J, Walczak K, Anzenberg E, et al. Journal of the American Chemical Society, 2014, 136(17), 6191.
3 Yu Y, Zhang Z, Yin X, et al. Nature Energy, 2017, 2(6), 17045.
4 Luo Z, Wang T, Gong J. Chemical Society Reviews, 2019, 48(7), 2158.
5 Xia Z, Zhou X, Li J, et al. Science Bulletin, 2015, 60(16), 1395.
6 Fujishima A, Honda K. Nature, 1972, 238(5358), 37.
7 Grätzel M. Nature, 2001, 414(6861), 338.
8 Bak T, Nowotny J, Rekas M, et al. International Journal of Hydrogen Energy, 2002, 27(10), 991.
9 Kudo A, Miseki Y. Chemical Society Reviews, 2009, 38(1), 253.
10 Grinberg V A, Emets V V, Maslov D A, et al. New Journal of Chemistry, 2020, 44(37), 16200.
11 Ng K H, Minggu L J, Mark-Lee W F, et al. Materials Research Bulletin, 2018, 98, 47.
12 Glasscock J A, Barnes P R F, Plumb I C, et al. Journal of Physical Chemistry C, 2008, 111(44), 16477.
13 Wang F, Song L X, Teng Y, et al. RSC Advances, 2019, 9(61), 35372.
14 Seidel H, Csepregi L, Heuberger A, et al. Journal of the Electrochemical Society, 1990, 137(11), 3612.
15 Baum T, Schiffrin D J. Journal of Electroanalytical Chemistry, 1997, 436(1-2), 239.
16 Satterthwaite P F, Scheuermann A G, Hurley P K, et al. ACS Applied Materials Interfaces, 2016, 8(20), 13140.
17 Fu H J, Moreno-Hernandez I A, Buabthong P, et al. Energy & Environmental Science, 2020, 13(11), 4132.
18 Carmo M, Fritz D L, Mergel J, et al. International Journal of Hydrogen Energy, 2013, 38(12), 4901.
19 Ran J, Zhang J, Yu J, et al. Chemical Society Reviews, 2014, 43(22), 7787.
20 Scheuermann A G, Prange J D, Gunji M, et al. Energy & Environmental Science, 2013, 6(8), 2487.
21 Li S, She G, Xu J, et al. ACS Applied Materials Interfaces, 2020, 12(35), 39092.
22 Han T, Shi Y, Song X, et al. Journal of Materials Chemistry A, 2016, 4(21), 8053.
23 Oh K, Mériadec C, Lassalle-Kaiser B, et al. Energy & Environmental Science, 2018, 11(9), 2590.
24 Kenney M J, Gong M, Li Y, et al. Science, 2013, 342(6160), 836.
25 Yu X, Yang P, Chen S, et al. Advanced Energy Materials, 2016, 7(6), 1601805.
26 Loget G, Fabre B, Fryars S, et al. ACS Energy Letters, 2017, 2(3), 569.
27 Shi Y, Han T, Gimbert-Suriñach C, et al. Journal of Materials Chemistry A, 2017, 5(5), 1996.
28 Hong W, Cai Q, Ban R, et al. ACS Applied Materials Interfaces, 2018, 10(7), 6262.
29 Li S, She G, Chen C, et al. ACS Applied Materials Interfaces, 2018, 10(10), 8594.
30 Zhao J, Gill T M, Zheng X. Nano Research, 2018, 11(6), 3499.
31 Chen C, Lu Y, Fan R, et al. ChemSusChem, 2020, 13(15), 3893.
32 Li F, Li Y, Zhuo Q, et al. ACS Applied Materials Interfaces, 2020, 12(10), 11479.
33 Sun K, Mcdowell M T, Nielander A C, et al. Journal of Physical Che-mistry Letters, 2015, 6(4), 592.
34 Sun K, Saadi F H, Lichterman M F, et al. Proceedings of the National Academy of Sciences, 2015, 112(12), 3612.
35 Cui W, Wu S, Chen F, et al. ACS Nano, 2016, 10(10), 9411.
36 Young E R, Costi R, Paydavosi S, et al. Energy & Environmental Science, 2011, 4(6), 2058.
37 Lee S A, Lee T H, Kim C, et al. ACS Catalysis, 2018, 8(8), 7261.
38 Oh K, Joanny L, Gouttefangeas F, et al. ACS Applied Energy Materials, 2019, 2(2), 1006.
39 Cai Q, Hong W, Jian C, et al. Nanoscale, 2020, 12(14), 7550.
40 Zhao C, Guo B, Xie G, et al. ACS Applied Energy Materials, 2020, 3(9), 8216.
41 Chen Y W, Prange J D, Duhnen S, et al. Nature Materials, 2011, 10(7), 539.
42 Cai Q, Hong W, Jian C, et al. ACS Catalysis, 2018, 8(10), 9238.
43 Scheuermann A G, Lawrence J P, Kemp K W, et al. Nature Materials, 2016, 15(1), 99.
44 Kawde A, Annamalai A, Sellstedt A, et al. Physical Chemistry Chemical Physics, 2020, 22(48), 28459.
45 Yoon K, Lee J H, Kang J, et al. Nano Letters, 2016, 16(12), 7370.
46 Ma R, Wu S, Yu H, et al. Journal of Materials Science:Materials in Electronics, 2018, 29(15), 12700.
47 Scheuermann A G, Prange J D, Gunji M, et al. Energy & Environmental Science, 2013, 6(8), 2487.
48 Ji L, Mcdaniel M D, Wang S, et al. Nature Nanotechnology, 2015, 10(1), 84.
49 Cai Q, Hong W, Jian C, et al. Nano Energy, 2020, 70, 104485.
50 Lee D K, Choi K S. Nature Energy, 2017, 3(1), 53.
51 Liu Z, Li C, Xiao Y, et al. The Journal of Physical Chemistry C, 2020, 124(5), 2844.
52 Boettcher S W, Warren E L, Putnam M C, et al. Journal of the American Chemical Society, 2011, 133(5), 1216.
53 Zhang H, Ding Q, He D, et al. Energy & Environmental Science, 2016, 9(10), 3113.
54 Kosten E D, Warren E L, Atwater H A. Optics Express, 2011, 19(4), 3316.
55 Ying Z, Yang X, Tong R, et al. ACS Applied Energy Materials, 2019, 2(9), 6883.
56 Yao T, Chen R, Li J, et al. Journal of the American Chemical Society, 2016, 138(41), 13664.
[1] 杨强, 刘洪新, 何端鹏, 陈海峰, 陈维强, 金晶, 潘福明. 高导热沥青基碳纤维复合材料在航天器中的应用现状及展望[J]. 材料导报, 2024, 38(1): 22080244-8.
[2] 沈燕, 朱航宇, 龚泳帆, 何强. 碱对硫铝酸盐水泥-粉煤灰体系水化硬化的影响[J]. 材料导报, 2023, 37(S1): 23050143-6.
[3] 张伟, 杨旭, 陈晓通, 任军强, 卢学峰. 纳米结构金属材料制备工艺及强化稳定方式研究进展[J]. 材料导报, 2023, 37(S1): 23010123-16.
[4] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[5] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[6] 史书源, 安秋凤, 邱甲云. TiO2/有机硅溶胶改性含氟苯丙乳液的制备及性能表征[J]. 材料导报, 2023, 37(8): 21110053-8.
[7] 赵冠琳, 刘树帅, 吴东亭, 王新洪, 邹勇. 元素W与Mo对非晶Ni-P镀层热稳定性和耐腐蚀性能的影响[J]. 材料导报, 2023, 37(7): 21070071-7.
[8] 杨春利, 黄江龙, 杜晶, 陈喜, 张浩, 王靖. In、Ta共掺杂Ni-BaCeO3基氢分离膜[J]. 材料导报, 2023, 37(6): 21090258-8.
[9] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[10] 金胜利, 寿春晖, 黄绵吉, 贺海晏, 李聪. 钙钛矿太阳能电池稳定性研究进展及模组产业化趋势[J]. 材料导报, 2023, 37(5): 21030201-13.
[11] 蒋佳骏, 吴张永, 朱启晨. 水基Ni0.5Zn0.5Fe2O4-SiC二元混合磁流体的稳定性、流变性、热物性与低速润滑性[J]. 材料导报, 2023, 37(20): 22040257-8.
[12] 赵帆, 周文健, 张志豪. 稀土镧对H13模具钢回火稳定性和抗氧化性的影响[J]. 材料导报, 2023, 37(2): 22070125-6.
[13] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[14] 聂真, 褚万立, 聂伟志, 陈煜. 含碘敷料的研究进展与应用现状[J]. 材料导报, 2023, 37(2): 20090021-7.
[15] 盛友杰, 彭云川, 张含灵, 阎灿彬, 李杨, 马文智. SiO2纳米颗粒对环保型泡沫灭火剂稳定性的影响[J]. 材料导报, 2023, 37(18): 22050272-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed