Please wait a minute...
材料导报  2022, Vol. 36 Issue (7): 20050125-11    https://doi.org/10.11896/cldb.20050125
  无机非金属及其复合材料 |
镁离子电池正极材料的研究现状
张琴1, 胡耀波1,2, 王润1, 王俊1
1 重庆大学材料科学与工程学院,重庆 400044
2 国家镁合金材料工程技术研究中心,重庆 400044
Research Status of Cathode Materials for Magnesium-Ion Batteries
ZHANG Qin1, HU Yaobo1,2, WANG Run1, WANG Jun1
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 National Engineering Research Center for Magnesium Alloys, Chongqing 400044, China
下载:  全 文 ( PDF ) ( 4992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石油和天然气等传统能源的过度消耗导致环境污染和能源危机日趋严重。因此,迫切需要开发环境友好、大规模且高效的储能装置来持续性地获取风能、太阳能等间歇性能源。而在各种储能技术中,二次电池因具有能量转换效率高、使用寿命长和成本低廉等优点而最具研发前景。
与研究广泛的锂离子电池相比,镁离子电池理论上能够提供更多的电子,其容量是锂离子电池的2~3倍,且镁离子电池具有资源丰富、环境友好、无毒、价格低廉等优点,因此镁离子电池被认为是便携式设备和重载能源设备的一个有前途的候选产品。自2000年初一个成功的镁离子电池原型出现后,研究人员对镁离子电池展开了大量研究。但目前仍存在着一些问题严重阻碍了可充镁离子电池(RMBs)的商业化发展。由于Mg2+具有高电荷密度、强的极化效应和缓慢的扩散动力学,开发出符合目前商业需求的正极材料仍是一个巨大挑战。
RMBs正极材料主要包括过渡金属硫化物、过渡金属氧化物、聚阴离子型化合物和普鲁士蓝类似物等。过渡金属硫化物结构刚性较小,在充放电循环过程中不容易产生结构坍塌,但其存在离子捕获效应及缓慢的扩散动力学等缺陷。过渡金属氧化物具有比硫化物更高的电压,但该材料的结构刚性较大,循环性能差。具有介孔结构的聚阴离子型化合物有利于提高电池的电化学性能,但其导电性有待提高。具有开放可调结构的普鲁士蓝类似物有利于Mg2+的快速脱嵌,但其与水性电解质的相容性较差。近年来,国内外对RMBs正极材料的研究报道显著增加,针对其存在的问题,研究人员主要从纳米化、结构调整、掺杂改性及包覆改性等方面进行材料的优化设计。
本文主要对各种类的RMBs正极材料在国内外的研究状况进行了概括,包括其晶体结构、材料的研究现状及存在的问题,并分析了其未来面临的挑战,以期为合成高能量密度、高循环稳定性的RMBs正极材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张琴
胡耀波
王润
王俊
关键词:  镁离子电池  正极材料  硫化物  氧化物  聚阴离子型化合物  普鲁士蓝类似物    
Abstract: Excessive consumption of traditional energy sources such as oil and natural gas has led to increasingly serious environmental pollution and ene-rgy crises. Therefore, it is imperative to develop environmentally friendly, large-scale and efficient energy storage devices to obtain intermittent energy such as wind and solar energy continuously. Among various energy storage technologies, secondary batteries have the best research and development prospects for their advantages of high energy conversion efficiency, long service life, and low cost.
In comparison with the widely studied lithium-ion batteries, the magnesium-ion batteries can theoretically provide more electrons, which makes their capacity 2 to 3 times as large as that of the lithium-ion batteries. Furthermore, magnesium-ion batteries, owing the advantages of abundant resources, environmental friendliness, non-toxicity and low prices, are considered as one potential candidate for portable devices and heavy-duty energy equipment. A lot of studies on magnesium-ion batteries have been carried out since a successful prototype of magnesium-ion battery appeared in early 2000. However, the commercial development of rechargeable magnesium-ion batteries (RMBs) is still hampered by some challenges. At present, due to the high charge density, strong polarization effect and slow diffusion kinetics of Mg2+, it is still a great challenge to develop cathode materials that can meet the current commercial needs.
RMBs cathode materials mainly include transition metal sulfides, transition metal oxides, polyanionic compounds and Prussian blue analogs. The transition metal sulfides have a low rigidity structure that is difficult to collapse during the charge-discharge cycle. However, some defects such as ion trapping effect and slow diffusion kinetics are found in transition metal sulfides. Transition metal oxides have higher voltage than sulfides but great structural rigidity and poor cycle performance of them can't be ignored. The polyanionic compounds with mesoporous structure are beneficial to improving the electrochemical performance of RMBs, but the conductivity needs to be improved. The Prussian blue analogue with an open and adjustable structure is conducive to the rapid deintercalation of Mg2+ while its compatibility with aqueous electrolytes is poor. In recent years, researchers have mainly optimized the design of cathode materials from the aspects of nanocrystallization, structural adjustment, doping modification and coating modification in response to the present challenges.
In this paper, the domestic and foreign research status of various types of RMBs cathode materials including the information of crystal structure, research status and existing problems is reviewed. Meanwhile, challenges of RMBs cathode materials are also analyzed to provide reference for synthesizing RMBs cathode materials with high energy density and high cycle stability.
Key words:  magnesium-ion battery    cathode material    sulfide    oxide    polyanionic compound    Prussian blue analogs
发布日期:  2022-04-07
ZTFLH:  TM912  
基金资助: 重庆大学中央高校基本科研业务费(2020CDCGCL005)
通讯作者:  yaobohu@cqu.edu.cn   
作者简介:  张琴,2019年7月本科毕业于攀枝花学院材料科学与工程学院。现为重庆大学材料科学与工程学院硕士研究生,在胡耀波副教授的指导下进行研究。目前主要研究领域为可充镁离子电池正极材料。
胡耀波,重庆大学国家镁合金材料工程技术研究中心教授。2002年获得华中科技大学材料科学与工程博士学位。研究方向包括镁合金及镁离子可充电电池的制备和应用等。
引用本文:    
张琴, 胡耀波, 王润, 王俊. 镁离子电池正极材料的研究现状[J]. 材料导报, 2022, 36(7): 20050125-11.
ZHANG Qin, HU Yaobo, WANG Run, WANG Jun. Research Status of Cathode Materials for Magnesium-Ion Batteries. Materials Reports, 2022, 36(7): 20050125-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050125  或          http://www.mater-rep.com/CN/Y2022/V36/I7/20050125
1 Andrews J L, Mukherjee A, Yoo H D, et al. Chemistry,2018,4(3),564.
2 Canepa P, Gautam G S, Hannah D C, et al. Chemical Reviews, 2017, 117(5), 4287.
3 Pang Q, Sun C, Yu Y, et al. Advanced Energy Materials, 2018, 8(19), 1800144.
4 Ding J, Du Z, Gu L, et al. Advanced Materials, 2018, 30(26), 1800762.
5 Gregory T D, Hoffman R J, Winterton R C. Journal of the Electrochemical Society, 1990, 137(3), 775.
6 Aurbach D, Lu Z, Schechter A, et al. Nature,2000,407(6805),724.
7 Huie M M, Bock D C, Takeuchi E S, et al. Coordination Chemistry Reviews, 2015, 287, 15.
8 Muldoon J, Bucur C B, Gregory T. Chemical Reviews, 2014, 114(23), 11683.
9 Song J, Sahadeo E, Noked M, et al. Journal of Physical Chemistry Letters, 2016, 7(9), 1736.
10 Yoo H D, Shterenberg I, Gofer Y, et al. Energy & Environmental Science, 2013, 6(8), 2265.
11 Wang L, Vullum P E, Asheim K, et al. Nano Energy, 2018, 48, 227.
12 Wang L, Jiang B, Vullurn P E, et al. ACS Nano, 2018, 12(3), 2998.
13 Levi E, Gofer Y, Aurbach D. Chemistry of Materials,2010,22(3),860.
14 Cheng Y, Shao Y, Raju V, et al. Advanced Functional Materials, 2016, 26(20), 3446.
15 Rong Z, Malik R, Canepa P, et al. Chemistry of Materials, 2015, 27(17), 6016.
16 Peng B, Liang J, Tao Z, et al. Journal of Materials Chemistry, 2009, 19(19), 2877.
17 Feng Z Z, Yang J, NuLi Y N, et al. Electrochemistry Communications, 2008, 10(9), 1291.
18 NuLi Y N, Zheng Y P, Wang F, et al. Electrochemistry Communications, 2011, 13(10), 1143.
19 Zhao X, Zhao Z, Miao Y. Materials Research Bulletin, 2018, 101, 1.
20 Richard J, Benayad A, Colin J F, et al. Journal of Physical Chemistry C, 2017, 121(32), 17096.
21 Levi M D, Lancri E, Levi E, et al. Solid State Ionics, 2005, 176(19-22), 1695.
22 Levi E, Lancry E, Mitelman A, et al. Chemistry of Materials, 2006, 18(23), 5492.
23 Levi E, Gershinsky G, Aurbach D, et al. Chemistry of Materials, 2009, 21(7), 1390.
24 Wan L F, Wright J, Perdue B R, et al. Physical Chemistry Chemical Physics, 2016, 18(26), 17326.
25 Levi M D, Gizbar H, Lancry E, et al. Journal of Electroanalytical Chemistry, 2004, 569(2), 211.
26 Thoele F, Wan L F, Prendergast D. Physical Chemistry Chemical Physics, 2015, 17(35), 22548.
27 Liu B, Luo T, Mu G, et al. ACS Nano, 2013, 7(9), 8051.
28 Lancry E, Levi E, Gofer Y, et al. Chemistry of Materials, 2004, 16(14), 2832.
29 Lancry E, Levi E, Mitelman A, et al. Journal of Solid State Chemistry, 2006, 179(6), 1879.
30 Saha P, Jampani P H, Datta M K, et al. Journal of the Electrochemical Society, 2014, 161(4), A593.
31 Murgia F, Antitomaso P, Stievano L, et al. Journal of Solid State Chemistry, 2016, 242, 151.
32 Aurbach D, Suresh G S, Levi E, et al. Advanced Materials, 2007, 19(23), 4260.
33 Amatucci G G, Badway F, Singhal A, et al. Journal of the Electrochemical Society, 2001, 148(8), A940.
34 Emly A, Van der Ven A. Inorganic Chemistry, 2015, 54(9), 4394.
35 Tao Z L, Xu L N, Gou X L, et al. Chemical Communications, 2004, 18, 2080.
36 Amir N, Vestfrid Y, Chusid O, et al. Journal of Power Sources, 2007, 174(2), 1234.
37 Sun X, Bonnick P, Nazar L F. ACS Energy Letters, 2016, 1(1), 297.
38 Novak P, Imhof R, Haas O. Electrochimica Acta, 1999, 45(1-2), 351.
39 Novak P, Desilvestro J. Journal of the Electrochemical Society, 1993, 140(1), 140.
40 Gu Y, Katsura Y, Yoshino T, et al. Scientific Reports, 2015, 5, 986.
41 Li X L, Li Y D. Journal of Physical Chemistry B, 2004, 108(37), 13893.
42 Liang Y, Feng R, Yang S, et al. Advanced Materials,2011,23(5),640.
43 Yang S, Li D, Zhang T, et al. Journal of Physical Chemistry C, 2012, 116(1), 1307.
44 Liang Y, Yoo H D, Li Y, et al. Nano Letters, 2015, 15(3), 2194.
45 Liu Y, Jiao L, Wu Q, et al. Journal of Materials Chemistry A, 2013, 1(19), 5822.
46 Liu Y, Jiao L, Wu Q, et al. Nanoscale, 2013, 5(20), 9562.
47 Liu Y, Fan L Z, Jiao L. Journal of Power Sources, 2017, 340, 104.
48 Pereira-Ramos J P, Messina R, Perichon J. Journal of Electroanalytical Chemistry, 1987, 218(1-2), 241.
49 Shklover V, Haibach T, Ried F, et al. Journal of Solid State Chemistry, 1996, 123(2), 317.
50 Jiao L F, Yuan H T, Si Y C, et al. Journal of Power Sources, 2006, 156(2), 673.
51 Jiao L F, Yuan H T, Wang Y J, et al. Electrochemistry Communications, 2005, 7(4), 431.
52 Jiao L F, Yuan H T, Si Y C, et al. Electrochemistry Communications, 2006, 8(6), 1041.
53 Imamura D, Miyayama M. Solid State Ionics, 2003, 161(1-2), 173.
54 Imamura D, Miyayama M, Hibino M, et al. Journal of the Electrochemical Society, 2003, 150(6), A753.
55 Bervas M, Klein L C, Amatucci G G. Solid State Ionics, 2005, 176(37-38), 2735.
56 Stojkovic I, Cvjeticanin N, Markovic S, et al. Acta Physica Polonica A, 2010, 117(5), 837.
57 Lee S H, DiLeo R A, Marschilok A C, et al. ECS Electrochemistry Letters, 2014, 3(8), 87.
58 Lee C Y, Marschilok A C, Subramanian A, et al. Physical Chemistry Chemical Physics, 2011, 13(40), 18047.
59 Tang P E, Sakamoto J S, Baudrin E, et al. Journal of Non-Crystalline Solids, 2004, 350, 67.
60 Kim R H, Kim J S, Kim H J, et al. Journal of Materials Chemistry A, 2014, 2(48), 20636.
61 Perera S D, Archer R B, Damin C A, et al. Journal of Power Sources, 2017, 343, 580.
62 Du X, Huang G, Qin Y, et al. RSC Advances, 2015, 5(93), 76352.
63 An Q, Li Y, Yoo H D, et al. Nano Energy, 2015, 18, 265.
64 Park O K, Cho Y, Lee S, et al. Energy & Environmental Science, 2011, 4(5), 1621.
65 Kumagai N, Komaba S, Sakai H, et al. Journal of Power Sources, 2001, 97, 515.
66 Zhang R, Yu X, Nam K W, et al. Electrochemistry Communications, 2012, 23, 110.
67 Rasul S, Suzuki S, Yamaguchi S, et al. Solid State Ionics, 2012, 225, 542.
68 Rasul S, Suzuki S, Yamaguchi S, et al. Electrochimica Acta, 2012, 82, 243.
69 Wang M, Yagi S. Journal of Alloys and Compounds, 2020, 820, 153135.
70 Sinha N N, Munichandraiah N. Electrochemical and Solid State Letters, 2008, 11(11), 23.
71 Kurihara H, Yajima T, Suzuki S. Chemistry Letters, 2008, 37(3), 376.
72 Fong C, Kennedy B J, Elcombe M M. Zeitschrift Fur Kristallographie, 1994, 209(12), 941.
73 Yuan C, Zhang Y, Pan Y, et al. Electrochimica Acta, 2014, 116, 404.
74 Malavasi L, Ghigna P, Chiodelli G, et al. Journal of Solid State Chemistry, 2002, 166(1), 171.
75 Zhang R, Arthur T S, Ling C, et al. Journal of Power Sources, 2015, 282, 630.
76 Okamoto S, Ichitsubo T, Kawaguchi T, et al. Advanced Science, 2015, 2(8), 1500072.
77 Cabello M, Alcantara R, Nacimiento F, et al. Crystengcomm, 2015, 17(45), 8728.
78 Ling C, Mizuno F. Chemistry of Materials, 2013, 25(15), 3062.
79 Liu M, Rong Z, Malik R, et al. Energy & Environmental Science, 2015, 8(3), 964.
80 Wang H G, Yuan S, Ma D L, et al. Energy & Environmental Science, 2015, 8(6), 1660.
81 Wang Z, Ruan Z, Ng W S, et al. Small Methods, 2018, 2(10), 1800150.
82 Spahr M E, Novak P, Haas O, et al. Journal of Power Sources, 1995, 54(2), 346.
83 Pandey G P, Agrawal R C, Hashmi S A. Journal of Solid State Electrochemistry, 2011, 15(10), 2253.
84 Gershinsky G, Yoo H D, Gofer Y, et al. Langmuir, 2013, 29(34), 10964.
85 Incorvati J T, Wan L F, Key B, et al. Chemistry of Materials, 2016, 28(1), 17.
86 Mao M, Gao T, Hou S, et al. Chemical Society Reviews, 2018, 47(23), 8804.
87 Wan L F, Incorvati J T, Poeppelmeier K R, et al. Chemistry of Mate-rials, 2016, 28(19), 6900.
88 Kaveevivitchai W, Jacobson A J. Chemistry of Materials, 2016, 28(13), 4593.
89 Jin J, Wu L, Huang S, et al. Small Methods, 2018, 2(11), 1800171.
90 Chatterjee S, Sengupta S, Saha-Dasgupta T, et al. Physical Review B, 2009, 79(11), 115103.
91 Heath J, Chen H, Islam M S. Journal of Materials Chemistry A, 2017, 5(25), 13161.
92 Feng Z, Yang J, NuLi Y, et al. Journal of Power Sources, 2008, 184(2), 604.
93 NuLi Y N, Yang J, Wang J L, et al. Journal of Physical Chemistry C, 2009, 113(28), 12594.
94 NuLi Y N, Yang J, Li Y, et al. Chemical Communications, 2010, 46(21), 3794.
95 Nuli Y N, Yang J, Zheng Y P, et al. Journal of Inorganic Materials, 2011, 26(2), 129.
96 Mori T, Masese T, Orikasa Y, et al. Physical Chemistry Chemical Physics, 2016, 18(19), 13524.
97 Truong Q D, Devaraju M K, Honma I. Journal of Power Sources, 2017, 361, 195.
98 Li Y, Nuli Y N, Yang J, et al. Chinese Science Bulletin, 2011, 56(4-5), 386.
99 Orikasa Y, Masese T, Koyama Y, et al. Scientific Reports, 2014, 4, 5622.
100 Zheng Y P, NuLi Y N, Chen Q, et al. Electrochimica Acta, 2012, 66, 75.
101 Chen X, Bleken F L, Lovvik O M, et al. Journal of Power Sources, 2016, 321, 76.
102 Delmas C, Nadiri A, Soubeyroux J L. Solid State Ionics, 1988, 28, 419.
103 Ong S P, Chevrier V L, Hautier G, et al. Energy & Environmental Science, 2011, 4(9), 3680.
104 Shi J J, Yin G Q, Jing L M, et al. International Journal of Modern Physics B, 2014, 28(26), 1450176.
105 Kang J, Chung H, Doh C, et al. Journal of Power Sources, 2015, 293, 11.
106 Goodenough J B, Hong H Y P, Kafalas J A. Materials Research Bulletin, 1976, 11(2), 203.
107 Yin S C, Grondey H, Strobel P, et al. Journal of the American Chemical Society, 2003, 125(34), 10402.
108 Anuar N K, Adnan S B R S, Mohamed N S. Ceramics International, 2014, 40(8), 13719.
109 Imanaka N, Okazaki Y, Adachi G. Journal of Materials Chemistry, 2000, 10(6), 1431.
110 Makino K, Katayama Y, Miura T, et al. Journal of Power Sources, 2001, 99(1-2), 66.
111 Huang Z D, Masese T, Orikasa Y, et al. RSC Advances, 2015, 5(12), 8598.
112 Makino K, Katayama Y, Miura T, et al. Journal of Power Sources, 2001, 97, 512.
113 Makino K, Katayama Y, Miura T, et al. Journal of Power Sources, 2002, 112(1), 85.
114 Takahashi H, Takamura H. Materials Integration, 2012, 508, 291.
115 Zeng J, Yang Y, Lai S, et al. Chemistry-A European Journal, 2017, 23(66), 16898.
116 Cabello M, Alcantara R, Nacimiento F, et al. Electrochimica Acta, 2017, 246, 908.
117 Mizuno Y, Okubo M, Hosono E, et al. Journal of Materials Chemistry A, 2013, 1(42), 13055.
118 Wessells C D, Peddada S V, Huggins R A, et al. Nano Letters, 2011, 11(12), 5421.
119 Kim D M, Kim Y, Arumugam D, et al. ACS Applied Materials & Interfaces, 2016, 8(13), 8554.
120 Wessells C D, Huggins R A, Cui Y. Nature Communications, 2011, 2, 550.
121 Buser H J, Schwarzenbach D, Petter W, et al. Inorganic Chemistry, 1977, 16(11), 2704.
122 Wang R Y, Wessells C D, Huggins R A, et al. Nano Letters, 2013, 13(11), 5748.
123 Novak P, Scheifele W, Joho F, et al. Journal of the Electrochemical Society, 1995, 142(8), 2544.
124 Yu L, Zhang X G. Journal of Colloid and Interface Science, 2004, 278(1), 160.
125 Sun X, Bonnick P, Duffort V, et al. Energy & Environmental Science, 2016, 9(7), 2273.
126 Xu Y, Deng X, Li Q, et al. Chem, 2019, 5(5), 1194.
127 Sun X, Duffort V, Mehdi B L, et al. Chemistry of Materials, 2016, 28(2), 534.
[1] 谭义凤, 张婷, 张云飞, 孙琦, 田蒙奎. Cum-Fen/Ti1-xSnxO2复合催化剂的脱硝性能及抗硫活性[J]. 材料导报, 2022, 36(4): 20100096-6.
[2] 李泽朕, 刘昊, 徐沛瑶, 陈洲江, 王士斌, 陈爱政. 超临界抗溶剂法制备金属氧化物纳米颗粒的研究进展[J]. 材料导报, 2022, 36(3): 20080184-6.
[3] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[4] 何辉, 张忠明, 姜勇刚, 冯军宗, 李良军, 冯坚. 稀土氧化物疏水涂层制备方法的研究进展[J]. 材料导报, 2021, 35(z2): 50-55.
[5] 孙毅, 李梦晗, 王超, 韩毅, 李国栋. 重金属氧化物玻璃X/γ射线屏蔽性能评价方法探讨[J]. 材料导报, 2021, 35(z2): 101-106.
[6] 杨泽波, 辜振睿, 王海龙. 离子掺杂对钙质膨胀剂熟料性能的影响[J]. 材料导报, 2021, 35(z2): 259-261.
[7] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[8] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[9] 刘林涛, 张勇, 吕海兵, 何飞. EB-PVD热障涂层粘结层/TGO界面性能的研究进展[J]. 材料导报, 2021, 35(Z1): 160-162.
[10] 王鹏程, 赵运才, 刘明, 王慧鹏, 马国政, 王海斗. 稀土氧化物掺杂改性YSZ热障涂层研究现状与趋势[J]. 材料导报, 2021, 35(9): 9069-9076.
[11] 谢锐, 吕铮, 徐长伟, 刘春明. 热等静压温度对雾化合金粉制备的9Cr-ODS钢组织和性能的影响[J]. 材料导报, 2021, 35(8): 8169-8178.
[12] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[13] 代黎明, 肖国庆, 丁冬海. 含碳耐火材料防氧化技术综述[J]. 材料导报, 2021, 35(3): 3057-3066.
[14] 汪仕杰, 肖慧, 任玉荣, 黄小兵, 王海燕. Na3V2(PO4)3/CN/rGO复合正极材料的构筑及储钠性能研究[J]. 材料导报, 2021, 35(24): 24006-24010.
[15] 穆伟娜, 王力霞, 王琼, 蔡艳荣, 常春, 包德才. 钴铁双金属氢氧化物纳米片的制备及其在高电流下的电催化全解水性能[J]. 材料导报, 2021, 35(24): 24026-24031.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed