Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 38-45    
  无机非金属及其复合材料 |
硅纳米管的各种制备方法
田春1, 唐元洪1,2
1 海南师范大学物理与电子工程学院,海口 571158
2 海南省激光技术与光电功能材料重点实验室,海口 571158
Preparation Methods of Silicon Nanotubes
TIAN Chun1, TANG Yuanhong1,2
1 School of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158,China
2 Key Laboratory of Laser Technology and Photoelectric Functional Materials in Hainan Province, Haikou 571158,China
下载:  全 文 ( PDF ) ( 12299KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硅纳米管作为一种新型一维纳米材料,因其独特的性质有望在纳米电子器件、锂离子电池、传感器、场效应晶体管、磁性纳米器件、储氢器、光电子器件、场发射显示器件和量子计算机等方面获得非常广泛的应用。虽然研究人员早已在实验室中制备出硅纳米管,但是目前关于硅纳米管的研究报道不多,特别是关于硅纳米管的各种制备方法和不同种类型硅纳米管表征的综述类报道非常少。本文综述了关于硅纳米管几种最新及典型的制备方法,同时分析了几种典型硅纳米管的表征。最后总结了关于硅纳米管各种制备方法的优缺点,并且提出了几种改善硅纳米管性能的方法及在未来的研究重点。通过对硅纳米管最新研究进展的介绍以及相关叙述,希望能对硅纳米管未来的研究和应用提供帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田春
唐元洪
关键词:  硅纳米管  制备方法  化学气相沉积(CVD)  掺杂    
Abstract: The unique properties of silicon nanotubes are expected to have very wide potential applications in nano-electronic devices, lithium ion batteries, sensors, field-effect transistors, magnetic nanodevices, hydrogen storage devices, optoelectronic devices, field emission display devices and quantum computers. It is a new one-dimensional nanomaterial with a wide range of applications in the future. Although researchers have already prepared silicon nanotubes in the laboratory, there are not many reports on silicon nanotubes. In particular, there are few reports on the preparation methods and the characterization of different types of silicon nanotubes. In this paper, several recent and typical preparation me-thods of silicon nanotubes are reviewed, and the characterizations of several typical silicon nanotubes are analyzed. Finally, the advantages and disadvantages of various preparation methods of silicon nanotubes are summarized, and several methods to improve the properties of silicon nanotubes and the research emphasis in the future are put forward. This paper introduces the latest research progress and related narration of silicon nanotubes, and hopes to be helpful to the future researches and applications of silicon nanotubes.
Key words:  silicon nanotubes    preparation method    chemical vapor deposition (CVD)    doping
                    发布日期:  2021-12-09
ZTFLH:  TM23  
通讯作者:  yhtang2000@163.com   
作者简介:  田春,2018年6月毕业于白城师范学院,获得理学学士学位。现为海南师范大学物理与电子工程学院硕士研究生,在唐元洪教授的指导下进行研究。目前主要研究领域为硅纳米管的制备、表征和掺杂。
唐元洪,海南师范大学物理与电子工程学院教授,博士生导师。1985年和1988年,在湖南大学应用物理系分别获得本科及硕士学位;2000年在香港城市大学获得材料物理学博士学位;2000年9月至2002年9月,在加拿大西安大略大学化学系从事博士后工作;2002年10月至2003年8月,任加拿大科学院(NRC)客座研究员,获得2002年度加拿大国家自然科学与工程委员会客座研究员奖;2003年9月回国加盟湖南大学,任首位校聘“岳麓学者”特聘教授,并于2005年入选国家“985工程”湖南大学985首席科学家,作为主研人获得2005年国家自然科学奖二等奖;2007年入选中南大学“升华学者”特聘教授;2012年至2018年,任加拿大西安大略大学访问教授。教育部首届新世纪优秀人才、湖南省新世纪121人才、湖南大学材料科学与工程学院副院长、湖南大学纳米技术与信息材料研究所所长、教育部高等学校材料物理与化学教学指导委员会委员、中国科技大学国家同步辐射中心委员会委员、中国仪表材料学会常务理事、中国材料网理事会理事、中国国家同步辐射实验室用户专家委员会委员,是美国最著名的阿贡国家实验室同步辐射光源的持证使用人。从事硅纳米线/管、碳纳米线/管及纳米金刚石薄膜等纳米信息功能材料的研究与开发,完成数项国际科研项目。主持了973计划子项目、国家教育部新世纪优秀人才基金、国家“211”重点项目、国家“985”重点项目、国家高等学校博士点基金等。在Physical Review Letters、Advanced Materials、Applied Physics Letters等国际国内外重点核心杂志上发表学术论文140余篇,其中SCI收录82篇,影响因子大于3.0的有26篇,论文总引共3667次。在纳米科学与技术领域部分成果达到国际领先水平。
引用本文:    
田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
TIAN Chun, TANG Yuanhong. Preparation Methods of Silicon Nanotubes. Materials Reports, 2021, 35(z2): 38-45.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/38
1 Li Z P, Shang B W, Chuan G F. Recent Patents on Nanotechnology, 2010, 4(1),10.
2 Sha J, Niu J, Ma X, et al. Advanced Materials, 2010, 14(17),1219.
3 Iijima Sumio.Nature, 1991, 354(6348),56.
4 Morales A M, Lieber C M. Science, 1998, 279(5348),208.
5 Tang Y H, Zhang Y F, Lee C, et al. MRS Proceedings, 1998, 526,73.
6 Park M H, Kim M G, Joo J, et al.Nano Letters, 2009, 9(11),3844.
7 Yoo J, Kim J, Jung Y S, et al.Advanced Materials, 2012, 24(40),5452.
8 Chen J, Zhang G, Li B. Nano Letters, 2010, 10(10),3978.
9 Huisu J, Hui S, Jung G, et al. Advanced Materials, 2014, 26(21),3445.
10 Ben-Ishai M, Patolsky F. Journal of the American Chemical Society, 2011, 133(5),1545.
11 Kim Y Y, Kim H J, Jeong J H, et al.Advanced Engineering Materials, 2016,18,1349.
12 Gao P, Huang X, Zhao Y, et al. ACS Nano, 2018, 12(11),11481.
13 Sun Y, Liu N, Cui Y. Nature Energy, 2016, 1(7),16071.
14 Liang J, Li X, Cheng Q, et al.Nanoscale, 2015, 7(8),3440.
15 Wei W, Wei X. ACS Applied Energy Materials, 2018, 2(1),8b01870.
16 Lu Z, Wong T, Ng T W, et al. RSC Advances, 2013, 4(5),2440.
17 Xu G, Jin C, Yu L, et al. Materials Letters, 2018, 233,228.
18 Yin S, Ji Q, Zuo X, et al.Journal of Materials Science & Technology, 2018,34,1902.
19 Yuan Y, Xiao W, Wang Z, et al. Angew Chem Int Ed Engl, 2018,57(48),15743.
20 Zhang Z, Wang Z L, Lu X. ACS Nano. 2018,12(4),3587.
21 Le N T, Tian Y, Gonzalez-Rodriguez R, et al. Pharmaceutics, 2019,11(11),571.
22 Rodriguez R G. Silicon nanotubes and selected investigations in energy and biomaterial applications.Ph.D. Thesis, Universidad de las Americas Puebla, MX, 2017.
23 Zhang R Q, Lee S T, Law C K, et al.Chemical Physics Letters, 2002, 364(3-4),251.
24 Zhang M, Kan Y H, Zang Q J, et al.Chemical Physics Letters, 2003, 379(1-2),81.
25 Fagan S B, Mota R, Baierle R J, et al.Journal of Molecular Structure Theochem, 2001, 539(1-3),101.
26 Li B X, Cao P L.Journal of Molecular Structure Theochem, 2004, 679(1-2),127.
27 Kang J W, Byun K R, Hwang H J. Modelling & Simulation in Materials Science & Engineering, 2004, 12(1),1.
28 Bai J, Zeng X C, Tanaka H, et al.Proceedings of the National Academy of Sciences, 2004, 101(9),2664.
29 Verma V, Dharamvir K, Jindal V K. Journal of Nano Research, 2008, 2,85.
30 Durgun E, Tongay S, Ciraci S.Physical Review B, 2005, 72(7),075420.
31 Chen Y W, Tang Y H, Pei L Z, et al.Advanced Materials, 2010, 17(5),564.
32 Tang Y H, Pei L Z, Chen Y W, et al. Physical Review Letters, 2005, 95(11),116102.
33 Xie Y, Duygu K, Chen C, et al. Journal of Nanomaterials,2016, 11,1.
34 Wei L, Zhao D.Chemical Communications, 2013, 49(10),943.
35 Tseng Y M, Gu R Y, Cheng S L. Applied Surface Science, 2020, 508,145223.
36 Yuan H, Che X, Long Q.Journal of Microelectromechanical Systems, 2016, 25(4),1.
37 Soleimani-Amiri S, Gholizadeh A, Rajabali S, et al. RSC Advances, 2014, 4(25),12701.
38 Jeong H, Lee J, Bok C, et al. IEEE Transactions on Nanotechnology, 2017, 16(1),130.
39 Laney S K, Li T, Michalska M, et al. ACS Nano, 2020,14(9),12091.
40 RigvedE, Prashanth J H, Moni K D, et al. Journal of Materials Chemistry A, 2015, 3(20),11117.
41 Tesfaye A T, Gonzalez R, Coffer J L, et al. ACS Applied Materials & Interfaces. 2015,7(37),20495.
42 Li C, Liu Z, Gu C, et al. Advanced Materials, 2010, 18(2),228.
43 Sun Y L, Zheng X D, Jevasuwan W, et al. Nanomaterials, 2020, 10(12),2535.
44 Crescenzi M D, Castrucci P, Scarselli M, et al.Applied Physics Letters, 2005, 86(23),56.
45 Castrucci P, Scarselli M, Crescenzi M D, et al.Thin Solid Films, 2006, 508(1-2),226.
46 Castrucci P, Diociaiuti M, Tank C M, et al. Nanoscale, 2012, 4(16), 5195.
47 Moreno J, Swamy S S, Fujino T, et al.Chemical Physics Letters, 2000, 329(3-4),317.
48 Moreno J C, Yoshimura M.Journal of the American Chemical Society, 2001, 123(4),741.
49 Wang W, Huang J Y, Wang D Z, et al. Carbon, 2005, 43( 6),1328.
50 Ara M, Tomita K, Tada H. Chemical Physics Letters, 2015, 627,87.
51 Zhang C, Cheng H, Liu X.Materials Chemistry & Physics, 2016, 177,479.
52 Weng W, Yang J, Zhou J, et al.Advanced Science, 2020,7,2001492.
53 Xie M, Wang J, Fan Z, et al. Nanotechnology, 2008, 19(36),3656
54 Yamada S, Fujiki H.Japanese Journal of Applied Physics, 2006, 45(29/32),L837.
55 Yoo J, Kim J, Jung Y S, et al.Advanced Materials, 2012, 24(40),5452.
56 Yao Y, Mcdowell M T, Ryu I, et al. Nano Letters, 2011, 11(7),2949.
57 Arora N, Sharma N N. Diamond and Related Materials, 2014, 50,135.
58 Luo H M, Yang Y F, Sun Y X, et al.Journal of Solid State Electrochemistry, 2015, 19(4),1171.
59 Nayfeh M, Chaieb H.U.S.patent, US20087429369, 2008
60 陈扬文,江素华,邵丙铣,等.中国专利, CN 200810038215.7, 2008
61 Fukata N. Cheminform, 2010, 40(38),2829.
62 Fukata N, Subramani T, Jevasuwan W, et al. Small, 2017, 13(45).
63 Fukata N, Rurali R. Springer Nature, Singapore, 2020.
64 Yan B, Gang Z, Xiao C Z, et al.Applied Physics Letters, 2007, 91(10),435.
65 Katar S, Labiosa A, Plaud A E, et al.Nanoscale Research Letters, 2009, 5(1),74.
66 Ben-Ishai M, Patolsky F.Journal of the American Chemical Society, 2011, 133(5),1545.
[1] 丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
[2] 韦亦泠, 邓文江, 金彩虹, 李慧, 王传明, 孟铁宏, 张文娟, 赵鸿宾, 帅光平, 杨政敏, 李春荣, 胡先运. 高荧光量子产率的二硫化钼量子点制备及荧光性能研究[J]. 材料导报, 2021, 35(z2): 13-17.
[3] 董宏伟, 张冠星, 董显, 薛行雁, 沈元勋. 纳米银焊膏的研究进展[J]. 材料导报, 2021, 35(z2): 341-345.
[4] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[5] 刘静, 高正阳, 王杰, 陈霈儒, 杨璐冰. 共掺杂改性TiO2光催化剂的研究进展[J]. 材料导报, 2021, 35(Z1): 42-47.
[6] 王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
[7] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[8] 解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
[9] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[10] 汪冲, 朱晓云, 龙晋明. 掺杂导电增强相对铝电极性能的影响[J]. 材料导报, 2021, 35(8): 8082-8087.
[11] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[12] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[13] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[14] 张仁耀, 郭俊梅, 闻明, 管伟明. 贵金属钌的制备、性能及应用研究进展[J]. 材料导报, 2021, 35(21): 21243-21248.
[15] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed