Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12001-12007    https://doi.org/10.11896/cldb.20070042
  无机非金属及其复合材料 |
基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析
裴培1,2, 彭勇波1,3
1 同济大学土木工程防灾国家重点实验室,上海 200092
2 同济大学土木工程学院,上海 200092
3 同济大学上海防灾救灾研究所,上海 200092
Microstructural Evolution and Aggregation Kinetics of Magnetorheological Suspensions Based on Molecular Dynamics Simulations
PEI Pei1,2, PENG Yongbo1,3
1 State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
2 College of Civil Engineering, Tongji University, Shanghai 200092, China
3 Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 4773KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁流变液优异的力学性能与高效的可控性能使其成为具有广阔应用前景的一类新型智能材料。针对磁流变液宏观力学性能与其微观结构行为的密切相关性,本工作采用分子动力学仿真软件LAMMPS开展了不同磁场强度和颗粒体积率下磁流变液的微观结构演化模拟,并在此基础上分析了磁流变液的宏观力学性能;进而通过对不同磁场强度、不同颗粒体积率和不同剪应变下磁流变液模拟微观结构的定性观察与定量分析,深入剖析了磁流变液微观结构的演化规律与链簇倾角的统计特性。本工作为进一步揭示磁流变液微观机理与宏观力学性能相关性、开展磁流变液材料及其组成构件的设计优化提供关键理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴培
彭勇波
关键词:  磁流变液  分子动力学模拟  微观结构  动态聚合  链簇倾角    
Abstract: Magnetorheological (MR) fluids have been regarded as a promising intelligent material with wide application prospect due to their excellent mechanical property and efficient controllability. The bulk rheology of MR fluids is closely related to their microstructures. In this context, LAMMPS is used to investigate the microstructural evolution of MR suspensions with different volume fractions under different magnetic fields, based on which the macro mechanical property of MR suspensions was analyzed. Then qualitative observation and quantitative analysis were conducted on the microstructures of MR suspensions with different simulation parameters (volume fraction, magnetic fields and shear strain). The associated mechanism was revealed and the statistical property of chain dip angles was addressed. This research has provided a theoretical basis for further revealing the correlation of microstructural evolution and macro mechanical property of MR fluids as well as designing and optimizing MR fluid materials and devices.
Key words:  magnetorheological suspensions    molecular dynamics simulation    microstructure    aggregation kinetics    chain dip angle
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  O361.3  
  TB381  
基金资助: 国家自然科学基金项目(51878505)
通讯作者:  pengyongbo@tongji.edu.cn   
作者简介:  裴培,同济大学土木工程学院博士研究生,主要从事磁流变阻尼器多尺度调控及其结构半主动控制研究。
彭勇波,博士,同济大学上海防灾救灾研究所研究员,博士研究生导师,主要从事结构振动控制、智能材料与结构、不确定性量化等方面的研究。
引用本文:    
裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
PEI Pei, PENG Yongbo. Microstructural Evolution and Aggregation Kinetics of Magnetorheological Suspensions Based on Molecular Dynamics Simulations. Materials Reports, 2021, 35(12): 12001-12007.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20070042  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12001
1 Rabinow J.Electrical Engineering, 1948, 67(12), 1167.
2 Christie M, Sun S, Deng L, et al.Mechanical Systems and Signal Proces-sing, 2019, 116, 530.
3 Zhang Z K, Peng Y B. Journal of Vibration Engineering, 2020, 33(3), 494(in Chinese).
张振凯, 彭勇波. 振动工程学报, 2020, 33(3), 494.
4 Wang D M, Yao L, Shao W B, et al. Journal of Mechnical Engineering, 2019, 55(6), 100(in Chinese).
王道明, 姚兰, 邵文彬, 等. 机械工程学报,2019, 55(6), 100.
5 Deng Y R. Research on magnetorheological fluid clutch for vehicle-moun-ted power generation. Master's Thesis, China University of Mining and Technology, China, 2019 (in Chinese).
邓永瑞. 车辆随车发电用磁流变液离合器的研究. 硕士学位论文, 中国矿业大学, 2019.
6 Gontijo R, Malvar S, Cunha F.Powder Technology, 2016, 297, 165.
7 Peng Y B, Ghanem R, Li J.Journal of Intelligent Material Systems and Structures, 2012, 23(12), 1351.
8 Peng Y B, Li J.International Journal for Multiscale Computational Engineering, 2011, 9(2), 175.
9 Segovia-Gutiérrez J, Berli C L A, De Vicente J.Journal of Rheology, 2012, 56(6), 1429.
10 Melle S, Martin J E.Journal of Chemical Physics, 2003, 118(21), 9875.
11 Ocalan M, McKinley G H.Journal of Intelligent Material Systems and Structures, 2012, 23(9), 969.
12 Ido Y, Sumiyoshi H, Tsutsumi H.Computers and Fluids, 2017, 142, 86.
13 Okada K, Satoh A.Journal of Magnetism and Magnetic Materials, 2017, 437, 29.
14 Satoh A.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504, 393.
15 Morillas J R, Bombard A J, de Vicente J. Smart Materials and Structures, 2018, 27(7), 07LT01.
16 Ji D, Luo Y, Ren H, et al.Journal of Nanomaterials, 2019, 2019, 1.
17 Zhao P H, Fu Y Z, Li H L, et al.Chemical Physics Letters, 2019, 722, 74.
18 Guo C W, Chen F, Meng Q R, et al.Journal of Magnetism and Magnetic Materials, 2014, 360, 174.
19 Xu F H, Xu Z D, Zhang X C, et al.Journal of Vibration and Acoustics, 2016, 138, 011017.
20 Jiles D.Introduction to magnetism and magnetic materials, CRC press, USA, 2005.
21 Shahrivar K, Carreon-Gonzalez E, Morillas J R, et al.Soft Matter, 2017, 13(14), 2677.
22 Kittipoomwong D, Klingenberg D J, Ulicny J C.Journal of Rheology, 2005, 49(6), 1521.
23 Ekwebelam C, See H.Rheologica Acta, 2009, 48(1), 19.
24 Dominguez-Garcia P, Melle S, Pastor J M, et al.Physical Review E, 2007, 76, 051403.
25 Dominguez-Garcia P, Pastor J M, Rubio M A.European Physical Journal E, 2011, 34(4), 7.
26 Doi M, Edwards S F.The theory of polymer dynamics, Clarendon Press Oxford, UK, 1988.
[1] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[2] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[3] 卢喆, 王社良, 王善伟, 姚文娟, 刘博, 闫强强. 氯盐侵蚀-冻融循环耦合作用下改性糯米灰浆耐久性能增强方法[J]. 材料导报, 2021, 35(3): 3033-3040.
[4] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[5] 王志勇, 夏奇, 李波. ZnO掺杂对钙硼硅系玻璃陶瓷微观结构与性能的影响[J]. 材料导报, 2021, 35(12): 12049-12052.
[6] 魏致强, 王远贵, 齐孟, 郑旭煦, 袁小亚. 没食子酸协同聚羧酸减水剂分散氧化石墨烯及其对水泥砂浆性能的影响[J]. 材料导报, 2021, 35(10): 10042-10047.
[7] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[8] 王弘义, 罗一平, 纪东升, 陈亚蒙. 基于赫兹接触理论的磁流变液电阻计算方法[J]. 材料导报, 2020, 34(Z1): 486-489.
[9] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[10] 岳莉, 朱亚明, 高丽娟, 胡朝帅, 赖仕全, 赵雪飞. 煤沥青中喹啉不溶物的基础物性及喹啉不溶物基沥青炭的微观结构研究[J]. 材料导报, 2020, 34(8): 8077-8082.
[11] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[12] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[13] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[14] 房延凤,王丹,王晴,孔靖勋,常钧. 碳酸化钢渣及其在建筑材料中的应用现状[J]. 材料导报, 2020, 34(3): 3126-3132.
[15] 贾碧, 李晓博, 潘复生, 王如转, 袁玉娇, 罗春希, 朱钊, 刘汉蕾. 热压烧结温度对石墨烯/氧化铝复合材料力学性能的影响[J]. 材料导报, 2020, 34(24): 24001-24004.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed