Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4007-4011    https://doi.org/10.11896/cldb.19120189
  无机非金属及其复合材料 |
聚吡咯涂层改性的高温自阻断锂离子电池及其性能
安海霞1, 王景平1, 杨立2, 杨百勤1, 李喜飞3
1 陕西科技大学化学与化工学院,西安 710021
2 中国石油天然气股份有限公司长庆油田分公司第一输油处,西安 710021
3 西安理工大学材料科学与工程学院,西安 710021
High-temperature Self-blocking Lithium Ion Battery Modified by Polypyrrole Coating and Its Performance
AN Haixia1, WANG Jingping1, YANG Li2, YANG Baiqin1, LI Xifei3
1 College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
2 Changqing Oilfield Branch Company of CNPC, the First Oil Transportation Department, Xi'an 710021, China
3 College of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710021, China
下载:  全 文 ( PDF ) ( 4532KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,锂离子电池获得了越来越广泛的应用,尤其是在数码电子产品和电动汽车领域。但锂离子电池的安全性问题一直阻碍着锂离子电池的进一步发展。针对这个问题,本实验探索了具有自阻断功能的聚吡咯(PPy)基新型锂离子电池温度敏感电极。首先,在铝箔上涂覆厚度为5 μm的具有正温度系数(PTC)特性的PPy涂层,干燥后继续在上面涂覆622活性材料,制备成PPy-622复合电极,接着测试了该电极高温前后的电化学行为。结果发现,该复合电极在室温下的电化学行为与没有PTC涂层的622电极相差很小,但PPy-622在140 ℃左右的高温下具有很明显的PTC行为,电池的容量大幅度下降,PPy涂层能明显保护电池免受热失控。由于PPy的制造成本低,PPy-622电极的制备工艺简单,这种新型的PTC电极为构建更安全的锂离子电池提供了很大的可能性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安海霞
王景平
杨立
杨百勤
李喜飞
关键词:  锂离子电池  温度敏感电极  正温度系数材料  聚吡咯  脱掺杂    
Abstract: Due to many advantages of lithium-ion batteries, in recent years, they have been extensively applied in many fields, especially in digital electronics and electric vehicles. However, the further development of lithium-ion batteries was dragged down by the safety of lithium-ion batteries. To solve the problem, a new temperature-sensitive electrode based on polypyrrole(PPy) material with self-blocking function was explored for lithium ion batteries. A composite electrode of PPy-LiNi0.6Co0.2Mn0.2O2 (PPy-622) with the sandwich structure was prepared and tes-ted for electrochemical behavior. First of all, PPy coating of 5 μm thickness with positive temperature coefficient (PTC) characteristics was prepared on the aluminum foil. After drying, the 622 active material was coated on PPy coating and form a sandwich structure of PPy-622 electrode. At room temperature, the electrochemical behavior of the PPy-622 electrode was similar to that of the 622 electrode without the PTC coa-ting. However, PPy-622 electrode had a clear PTC behavior at about 140 ℃ to show the battery capacity dropped significantly, which can protect the thermal runaway of lithium-ion batteries. Due to the low cost of PPy and the simple preparation process of PPy-622 electrodes, this new PTC electrode offers great possibilities for building a safer lithium-ion battery.
Key words:  lithium-ion battery    temperature-sensitive electrode    positive temperature coefficient material    polypyrrole    dedoping
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TQ311  
基金资助: 湖北省自然科学基金(2018CFB454); 湖北文理学院教师科研能力培育基金(2020kypyfy031); 湖北文理学院学科开放基金(XK2020042)
通讯作者:  wangjingping@sust.edu.cn; 80737185@qq.com   
作者简介:  安海霞,2017年6月毕业于陕西科技大学,获得工学学士学位。现在是陕西科技大学化学与化工学院的一名硕士研究生,指导老师是王景平副教授。研究生期间的主要研究方向是PPy基锂离子电池正温度系数电极的制备及性能。
王景平,陕西科技大学化学与化工学院副教授、硕士研究生导师,1997年7月本科毕业于大连工业大学,2011年11月在西安交通大学电信学院取得电子科学与技术专业博士学位,2012 年至 2013年在香港理工大学(中国)进行博士后工作,主要从事高分子材料的成型加工、储能高分子材料以及电化学污水处理的研究工作。
李喜飞,教授,博士研究生导师,入选2018年、2019年科睿唯安全球高被引科学家。现任西安理工大学先进电化学能源研究院执行院长、现代分析测试中心副主任,陕西省储能材料表面技术国际联合研究中心主任,国际电化学能源科学院(IAOEES)副主席,Springer-Nature旗下国际期刊Electrochemical Energy Reviews(即时影响因子已超过18)执行主编,陕西省高性能新能源动力电池创新团队负责人,西安纳米科技学会常务理事等。主要从事微/纳米功能材料界面的设计、优化及二次电池的应用研究。
引用本文:    
安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
AN Haixia, WANG Jingping, YANG Li, YANG Baiqin, LI Xifei. High-temperature Self-blocking Lithium Ion Battery Modified by Polypyrrole Coating and Its Performance. Materials Reports, 2021, 35(4): 4007-4011.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19120189  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4007
1 Abada S, Marlair G, Lecocq A, et al. Power Sources, 2016, 306,178.
2 Lu L, Han X, Li J, et al. Power Sources, 2013, 226,272.
3 Nagasubramanian G, Fenton K. Electrochimica Acta, 2013, 101,3.
4 Wang Q, Ping P, Zhao X, et al.Power Sources, 2012, 208(15), 210.
5 Liu L, Zhang N Q, Sun K N, et al.Rare Metal Materials and Enginee-ring, 2010, 39 (5), 936(in Chinese).
刘伶, 张乃庆, 孙克宁, 等.稀有金属材料与工程, 2010, 39 (5), 936.
6 Spotnitz R, Franklin J.Power Sources, 2003, 113(1), 81.
7 Ai X P, Cao Y L, Yang H X. Electrochemistry, 2010, 16(1), 6(in Chinese).
艾新平, 曹余良, 杨汉西. 电化学, 2010, 16(1), 6.
8 Belov D, Mo-Hua Yang.Solid State Electrochemistry, 2008, 12(7-8),885.
9 Liu Z H, Chai J C, Zhang J J, et al.Acta Polymerica Sinica, 2015, 11(11), 1246(in Chinese).
刘志宏, 柴敬超, 张建军, 等.高分子学报, 2015, 11(11), 1246.
10 Zhang J J, Yue L P, Liu Z H, et al.Science in China: Chemistry, 2014, 44 (7), 1069(in Chinese).
张建军, 岳丽萍, 刘志宏, 等.中国科学: 化学, 2014, 44(7),1069.
11 Xia L, Li S L, Ai X P, et al.Advances in Chemistry, 2011, 23(z1), 328(in Chinese).
夏兰, 李素丽, 艾新平, 等.化学进展, 2011, 23(z1),328.
12 Kise M, Yoshioka S, Kuriki H.Power Sources, 2007, 174(2), 861.
13 Feng X M, Ai X P, Yang H X.Electrochemistry Communications, 2004, 6(10),1021.
14 Xia L, Zhu L M, Zhang H Y, et al.Chinese Science Bulletin, 2012, 57, 1.
15 Zhong H, Kong C, Zhan H, et al. Power Sources, 2012, 216,273.
16 Chen Z, Hsu P C, Lopez J, et al.Nature Energy, 2016, 1(1),15009.
17 Chen G H, Yan W L. Journal of Huaqiao University: Natural Science, 1994, 15(2), 172(in Chinese).
陈国华, 颜文礼.华侨大学学报:自然科学版, 1994, 15(2),172.
18 Heinze J, Bilger R, Meerholz K.Berichte der Bunsengesellschaft für ph-ysikalische Chemie, 1988, 92(11),1266.
19 Tang Z Y, Xu G X.Progress in Chemical Industry, 2002, 21(9),34(in Chinese).
唐致远, 徐国祥. 化工进展, 2002, 21(9),34.
20 Ando E, Onodera S, Iino M, et al.Carbon, 2001, 39(1),101.
21 Tan Qinglong, Lu Shanfu, Lv Yang,et al. RSC Advances, DOI:10.1039/c6ra23630h.
22 Wang Jie, Xu Youlong, Chen Xi, et al.Journal of Physical Chemistry, 2007, 23(3), 299 (in Chinese).
王杰, 徐友龙, 陈曦, 等. 物理化学学报, 2007, 23(3), 299.
23 Li Y F. Bulletin of Polymers, 2005(4),55(in Chinese).
李永舫.高分子通报, 2005(4),55.
24 Jeon S S, Lee Y W, Im S S.Polymer Degradation and Stability, 2011, 96(5),778.
25 Ren L, Zhang X F, Wang L X, et al.Journal of Semiconductors, 2007, 28(9),1396(in Chinese).
任丽, 张雪峰, 王立新, 等.半导体学报, 2007, 28(9),1396.
26 Mohammad F, Calvert P D, Billingham N C.Bulletin of Materials Science, 1995, 18(3),255.
27 Tourillon G, Jugnet Y.Chemical Physics, 1988, 89(4),1905.
28 Nalwa H S.Physical Review B, Condensed Matter, 1989, 39(9),5964.
29 Sun B, Jones J J, Burford R P, et al.Materials Science, 1989, 24(11),4024.
30 Kang E T, Ti H C, Neoh K G, et al.Polymer Journal, 1988, 20(5),399.
31 Wang J, Wu C, Wu P, et al.Physical Chemistry Chemical Physics, 2017, 19(31),21165.
32 Wu C J, Wang J P, Bai Y, et al. Solid State Ionics, 2020, 346,115216.
33 Jeeju P P, Varma S J, Xavier P A F, et al.Materials Chemistry and Phy-sics, 2012, 134(2-3),803.
34 Neoh K G, Kang E T, Tan T C.Polymer Degradation and Stability, 1988, 21(2),93.
35 Ullah H, Shah A U H A, Bilal S, et al.The Journal of Physical Chemistry C, 2014, 118(31),17819.
36 Zhang Y, Su X, Zhou Y T, et al. Chemical Industry Progress, 2014, 33 (9), 2286(in Chinese).
张瑜, 苏翔, 周远涛, 等.化工进展, 2014, 33(9),2286.
37 Acik M, Baristiran C, Sonmez G.Materials Science, 2006, 41(14),4678.
38 Omastová M, et al. Designed Monomers & Polymers, 2004, 7(6),633.
39 Gazotti W A, Juliano V F, De Paoli M A.Polymer Degradation & Stability, 1993, 42(3),317.
40 Liang N. Study on preparation and properties of polypyrrole and its composites. Master's Thesis, Jiangsu University of Science and Technology, China, 2012 (in Chinese).
梁宁. PPy及其复合材料的制备与性能研究. 硕士学位论文, 江苏科技大学, 2012.
41 Liao Q S. Preparation of polypyrrole-based cathode composites and study on sodium electrical properties. Master's Thesis, Kunming University of Science and Technology, China, 2018 (in Chinese).
廖启书. PPy基正极复合材料制备及钠电性能研究. 硕士学位论文, 昆明理工大学, 2018.
42 Yang L L. Preparation and electrical properties of conductive polypyrrole and its composites. Master's Thesis, Qilu University of Technology, China, 2015 (in Chinese).
杨兰兰. 导电PPy及其复合材料的制备与电性能研究.硕士学位论文,齐鲁工业大学, 2015.
43 Wang J P, Xu Y, Wang J, et al. Physical Chemistry B, 2014, 118(5),1353.
44 Hu Chichang, Li Xixun. Electrochemical Society, 2002, 149 (8),A1049.
[1] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[2] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[3] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[4] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[5] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[6] 浦文婧, 芦伟, 谢凯, 郑春满. 宽温型锂离子电池有机电解液的研究进展[J]. 材料导报, 2020, 34(7): 7036-7044.
[7] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[8] 俞坤, 刘金香, 谢水波, 刘迎九, 葛玉杰. 聚吡咯/石墨相氮化碳复合材料吸附铀(Ⅵ)的性能与机制[J]. 材料导报, 2020, 34(23): 23020-23026.
[9] 袁梅梅, 徐汝辉, 姚耀春. 锂离子电池正极材料LiFePO4的表面碳包覆改性研究进展[J]. 材料导报, 2020, 34(19): 19061-19066.
[10] 李晶, 秦元斌, 宁晓辉. 改进高温固相法制备磷酸锰铁锂正极材料[J]. 材料导报, 2020, 34(16): 16001-16005.
[11] 邢宝林, 鲍倜傲, 李旭升, 史长亮, 郭晖, 王振帅, 侯磊, 张传祥, 岳志航. 锂离子电池用石墨类负极材料结构调控与表面改性的研究进展[J]. 材料导报, 2020, 34(15): 15063-15068.
[12] 吴永健, 唐仁衡, 欧阳柳章, 李文超, 王英, 黄玲. 分散剂对油性石墨烯导电浆料性能的影响及其在锂电池中的应用[J]. 材料导报, 2020, 34(12): 12030-12035.
[13] 刘艳, 宫庆华, 周国伟. 不同形貌CeO2基纳米复合材料的制备及应用研究进展[J]. 材料导报, 2019, 33(Z2): 125-129.
[14] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[15] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed