Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4001-4006    https://doi.org/10.11896/cldb.20040213
  无机非金属及其复合材料 |
CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟
张铃1,2,3, 杨钦如1,2,3, 余梦1,2,3, 黄锐明1,2,3, 程其进1,2,3
1 厦门大学能源学院,厦门361102
2 厦门大学深圳研究院,深圳 518000
3 厦门大学电子科学与技术学院,厦门 361005
Numerical Simulation of Graphene/Silicon Solar Cells Using CuSCN as an Inorganic Interface Layer
ZHANG Ling1,2,3, YANG Qinru1,2,3, YU Meng1,2,3, HUANG Ruiming1,2,3, CHENG Qijin1,2,3
1 College of Energy, Xiamen University, Xiamen 361102, China
2 Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
3 School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
下载:  全 文 ( PDF ) ( 4039KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 界面工程是改善石墨烯/硅异质结太阳能电池性能的有效方法之一,但目前常用的界面材料存在价格高、稳定性差等问题。本实验采用AFORS-HET软件对石墨烯/硅太阳能电池进行数值模拟,并引入无机界面材料CuSCN实现降低电池成本、优化器件性能和稳定性的目的,研究了CuSCN界面层的作用、CuSCN层的空穴迁移率和CuSCN/n-Si的价带补偿对太阳能电池性能的影响。结果表明,引入CuSCN界面层和增加CuSCN层的空穴迁移率均有利于提高器件的光伏性能。当CuSCN/n-Si界面的价带补偿大于-0.1 eV时,CuSCN层可作为电子阻挡-空穴传输层;并且当CuSCN/n-Si界面的价带补偿为0.2 eV时,所构建的石墨烯/CuSCN/硅异质结太阳能电池模型取得了25.8%的最佳光电转换效率。本研究有助于揭示影响石墨烯/CuSCN/硅异质结太阳能电池性能的各种因素,为制备低成本、高效率的石墨烯/硅太阳能电池提供了有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铃
杨钦如
余梦
黄锐明
程其进
关键词:  石墨烯  肖特基结  界面工程  硫氰酸亚铜  数值模拟  能带补偿    
Abstract: Interface engineering is one of the effective methods to improve the performance of graphene/silicon heterojunction solar cells, but until now the interface layer materials suffer from the problems of high price and poor stability. In this paper, the performance of graphene/silicon solar cells was studied via AFORS-HET software. An inorganic interface layer of CuSCN was adopted to reduce the cost and improving the performance and stability of the solar cells. The role of the CuSCN interface layer as well as the effects of the hole mobility of the CuSCN layer and the valence band offset of the CuSCN/n-Si on the performance of solar cells were investigated. The results show that the introduction of the CuSCN interface layer and the increase of the hole mobility of the CuSCN layer are beneficial to improving the photovoltaic performance of the devices. When the valence band offset of the CuSCN/n-Si interface is greater than -0.1 eV, the CuSCN layer can act as the electron-blocking and hole-transporting layer. Particularly, when the valence band offset of the CuSCN/n-Si interface is equal to 0.2 eV, the graphene/CuSCN/silicon heterojunction solar cell model can achieve the best photovoltaic conversion efficiency of 25.8%. This study helps to reveal the effect of various factors on the performance of the graphene/CuSCN/Si solar cells, and provides a solution for the preparation of low-cost and high-efficiency graphene/silicon solar cells.
Key words:  graphene    Schottky junction    interface engineering    copper(I) thiocyanate    numerical simulation    band offset
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TM914. 4  
基金资助: 深圳市基础研究面上项目(JCYJ20190809160401653);广东省基础与应用基础研究基金(2020A1515011187)
通讯作者:  qijin.cheng@xmu.edu.cn   
作者简介:  张铃,厦门大学能源学院硕士研究生,师从程其进副教授,主要从事光伏器件和光伏材料的研究。
程其进博士,厦门大学电子科学与技术学院,副教授。2008年毕业于南洋理工大学,主要从事低维半导体纳米材料和纳米器件的研究。
引用本文:    
张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
ZHANG Ling, YANG Qinru, YU Meng, HUANG Ruiming, CHENG Qijin. Numerical Simulation of Graphene/Silicon Solar Cells Using CuSCN as an Inorganic Interface Layer. Materials Reports, 2021, 35(4): 4001-4006.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040213  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4001
1 Bonaccorso F, Sun Z, Hasan T, et al.Nature Photonics, 2010, 4(9), 611.
2 Orlita M, Faugeras C, Plochocka P, et al. Physical Review Letters, 2008, 101(26), 267601.
3 Chen J H, Jang C, Xiao S, et al.Nature Nanotechnology, 2008, 3(4), 206.
4 Nair R R, Blake P, Grigorenko A N, et al. Science, 2008, 320(5881), 1308.
5 Shi Y, Kim K K, Reina A, et al.ACS Nano, 2010, 4(5), 2689.
6 Li X, Zhu H, Wang K, et al.Advanced Materials, 2010, 22(25), 2743.
7 Miao X C, Tongay S, Petterson M K, et al.Nano Letters, 2012, 12(6), 2745.
8 Huang K, Yu X, Cong J, et al.Advanced Materials Interfaces, 2018, 5(24), 1801520.
9 Shin D H, Kwak G Y, Kim J M, et al.Journal of Alloys and Compounds, 2019, 77, 913.
10 Shi E, Li H, Yang L, et al.Nano Letters, 2013, 13(4), 1776.
11 Xu D, He J, Yu X, et al.Advanced Electronic Materials, 2017, 3(3), 1600516.
12 Xu D, Yu X, Gao D, et al.Journal of Materials Chemistry A, 2016, 4(29), 11284.
13 Yoshikawa K, Kawasaki H, Yoshida W, et al.Nature Energy, 2017, 2(5), 17032.
14 Ruan K, Ding K, Wang Y, et al.Journal of Materials Chemistry A, 2015, 3(27), 14370.
15 Abate A, Leijtens T, Pathak S, et al.Physical Chemistry Chemical Phy-sics, 2013, 15(7), 2572.
16 Arora N, Dar M I, Hinderhofer A, et al.Science, 2017, 358(6364), 768.
17 Chappaz G C, Berson S, Salazar R, et al.Solar Energy Materials and Solar Cells, 2014, 120, 163.
18 Oppong A L, Huang S, Li Q, et al.Solar Energy, 2017, 141, 222.
19 Hazeghi F, Ghorashi S M B.Materials Research Express, 2019, 6(9), 095527.
20 Patel K, Tyagi P K.AIP Advances, 2015, 5(7), 077165.
21 Patel K, Tyagi P K.Carbon, 2017, 116, 744.
22 Varache R, Leendertz C, Gueunier F M E, et al.Solar Energy Materials and Solar Cells, 2015, 141, 14.
23 Geim A K, Novoselov K S.Nature Materials, 2007, 6(3), 183.
24 Nanduri S N R, Siddiki M K, Chaudhry G M, et al.In:2017 IEEE 44th Photovoltaic Specialist Conference, Washington(US),2017, pp.1018.
25 Zhang A, Chen Y, Yan J.IEEE Journal of Quantum Electronics, 2016, 52(6), 1600106.
26 Raoui Y, Ez Zs H, Tahiri N, et al.Solar Energy, 2019, 193, 948.
27 Ezealigo B N, Nwanya A C, Simo A, et al.Arabian Journal of Chemistry, 2020, 13(1), 346.
28 Wijeyasinghe N, Eisner F, Tsetseris L, et al.Advanced Functional Mate-rials, 2018, 28(31), 1802055.
29 Baig S, Hendsbee A D, Kumar P, et al.Journal of Materials Chemistry C, 2019, 7(46), 14543.
30 Luo W, Zeng C, Du X, et al.Journal of Materials Chemistry C, 2018, 6(18), 4895.
31 Song Y, Li X, Mackin C, et al.Nano Letters, 2015, 15(3), 2104.
[1] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[2] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[3] 吴学志, 尹邦跃. 原位合成法制备UO2-石墨烯复合燃料机理与性能研究[J]. 材料导报, 2020, 34(Z2): 6-10.
[4] 侯若梦, 贾瑛, 黄远征, 沈可可. 石墨烯复合材料在空气净化中的应用研究进展[J]. 材料导报, 2020, 34(Z2): 104-111.
[5] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[6] 于镇洋, 吕本元, 何威. 冷轧对原位生长三维石墨烯/铜基复合材料性能的影响[J]. 材料导报, 2020, 34(Z2): 390-394.
[7] 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(Z2): 555-561.
[8] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[9] 莫若飞, 杨玉婷, 潘可, 赵立春. 石墨烯及其衍生物在中医药领域中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 58-62.
[10] 王永红, 杨倩倩, 刘辰, 刘会斌, 林晨, 肖鹏飞, 巩凌峰. 非金属超疏水纳米涂层技术的研究进展[J]. 材料导报, 2020, 34(Z1): 66-71.
[11] 黄江锋, 刘鸿, 刘启斌, 韦康, 白家峰, 王弘, 黄宇亮, 韦祎, 兰柳妮, 冯守爱. 石墨烯-纳米SiO2气凝胶对巴豆醛的吸附性研究[J]. 材料导报, 2020, 34(Z1): 82-85.
[12] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[13] 方敏, 王璐, 侯佳欣, 南晓茹, 赵彬. 丝素蛋白复合石墨烯类材料在生物医学领域中的研究进展[J]. 材料导报, 2020, 34(Z1): 511-515.
[14] 魏俊富, 张天烨, 辛卓含, 王智航, 张丽. 水体中芳香类有机化合物吸附材料的研究进展[J]. 材料导报, 2020, 34(Z1): 527-530.
[15] 仪登豪, 冯英豪, 张锦芳, 李晓峰, 刘斌, 梁敏洁, 白培康. 3D打印石墨烯增强复合材料研究进展[J]. 材料导报, 2020, 34(9): 9086-9094.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed